ENTSOG AS4 Profile

Version 2 Revision 0 – 2015-06-17
Disclaimer

This document only provides specific technical information given for indicative purposes only and, as such, it is subject to further modifications. The information contained in the document is non-exhaustive and non-contractual in nature and subject to the completion of the applicable process foreseen for the approval of the EU Regulation embedding the Network Code on Interoperability and Data Exchange.

No warranty is given by ENTSOG in respect of any information so provided, including its further modifications. ENTSOG shall not be liable for any costs, damages and/or other losses that are suffered or incurred by any third party in consequence of any use of or reliance on the information hereby provided.
Table of contents

1 Introduction.. 5

2 AS4 Profile .. 6

2.1 AS4 and Conformance Profiles... 6

2.1.1 AS4 Standard ... 6

2.1.2 AS4 ebHandler Conformance Profile.. 6

2.2 ENTSOG AS4 ebHandler Feature Set.. 6

2.2.1 Messaging Model ... 7

2.2.2 Message Pulling and Partitioning... 8

2.2.3 Message Packaging .. 9

2.2.3.1 UserMessage.. 9

2.2.3.2 Payloads .. 10

2.2.3.3 Message Compression .. 10

2.2.4 Error Handling ... 10

2.2.5 Reliable Messaging and Reception Awareness .. 11

2.2.6 Security ... 11

2.2.6.1 Transport Layer Security .. 12

2.2.6.2 Message Layer Security .. 13

2.2.7 Networking ... 14

2.2.8 Configuration Management ... 14

2.3 Usage Profile .. 15

2.3.1 Message Packaging .. 15

2.3.1.1 Party Identification .. 15

2.3.1.2 Business Process Alignment.. 16

2.3.1.2.1 Service .. 16

2.3.1.2.2 Action .. 17

2.3.1.2.3 Role .. 17

2.3.1.2.4 ENTSOG AS4 Mapping Table .. 17

2.3.1.3 Message Correlation ... 18

2.3.2 Agreements .. 19

2.3.3 MPC .. 20

Page 3 of 38
2.3.4 Security .. 20
 2.3.4.1 Network Layer Security .. 20
 2.3.4.2 Transport Layer Security ... 20
 2.3.4.3 Message Layer Security .. 21
 2.3.4.4 Certificates and Public Key Infrastructure ... 21
 2.3.4.5 Certificate Profile .. 22
 2.3.4.5.1 Key Size ... 22
 2.3.4.5.2 Key Algorithm .. 22
 2.3.4.5.3 Naming .. 23
 2.3.4.5.4 Certificate Body ... 23
 2.3.4.5.5 Extensions Signing and Encryption End Entities ... 24
 2.3.4.5.6 Extended Key Usage ... 25
 2.3.4.5.7 Certificate Lifetime ... 25
 2.3.5 Message Payload and Flow Profile .. 26
 2.3.6 Test Service .. 27
 2.3.7 Environments .. 27
3 Example .. 28
4 Revision History ... 30
5 References ... 36
1 Introduction

COMMISSION REGULATION (EU) 2015/703 of 30 April 2015 establishing a network code on interoperability and data exchange rules published on 30 April 2015 by the European Commission (EC) specifies that “The following common data exchange solutions shall be used [for the communication] protocol: AS4” [CR2015/703]. This document defines an ENTSOG AS4 Profile that aims to support cross-enterprise collaboration in the gas sector using secure and reliable exchange of business documents based on the AS4 standard [AS4]. This is done by providing an ENTSOG AS4 ebHandler profile and a usage profile for the AS4 communication protocol that allow actors in the gas sector to deploy AS4 communication platforms in a consistent and interoperable way.

The ENTSOG AS4 Profile has been validated successfully during a Proof of Concept test that took place from May to July 2014 between 7 parties. The outcome was presented on a workshop in Brussels on September 9th 2014.

The main goals of this profile are to:

- Support exchange of EDIG@S XML documents and other payloads.
- Support business processes of Transmission System Operators for gas, such as Capacity Allocation Mechanism [CAM] and Nomination [NOM], as well as future business processes.
- Leverage experience gained with other B2B protocols in the gas sector, such as AS2 as described in the EASEE-gas implementation guide [EGMTP].
- Provide security guidance based on state-of-the-art best practices, following recommendations for “near term” (defined as “at least ten years”) future system use [ENISAAKSP].
- Provide suppliers of AS4-enabled B2B communication solutions with guidance regarding the required AS4 functionality.

This profile adopts document conventions common in technical specifications for Internet protocols and data formats. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL", "NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
2 AS4 Profile

This specification defines the ENTSOG AS4 profile as the selection of a specific conformance profile of the AS4 standard [AS4], which is profiled further for increased consistency and ease of configuration, and an AS4 Usage Profile that defines how to use a compliant implementation for gas industry document exchange. Section 2.1 describes the AS4 ebHandler Conformance Profile, of which this profile is an extended subset. Section 2.2 describes the feature set that conformant products are REQUIRED to support. Section 2.3 is a usage guide that describes configuration and deployment options for conformant products.

2.1 AS4 and Conformance Profiles

2.1.1 AS4 Standard

This ENTSOG AS4 profile is based on the AS4 Profile of ebMS 3.0 Version 1.0. OASIS Standard [AS4]. AS4 itself is based on other standards, in particular on OASIS ebXML Messaging Services Version 3.0: Part 1, Core Features OASIS Standard [EBMS3], which in turn is based on various Web Services specifications.

The OASIS Technical Committee responsible for maintaining the AS4, ebMS 3.0 Core and other related specifications is tracking and resolving issues in the specifications, which it intends to publish as a consolidated Specification Errata. Implementations of the ENTSOG AS4 Profile SHOULD track and implement resolutions at https://tools.oasis-open.org/issues/browse/EBXMLMSG.

2.1.2 AS4 ebHandler Conformance Profile

The AS4 standard [AS4] defines multiple conformance profiles, which define specific functional subsets of the version 3.0 ebXML Messaging, Core Specification [EBMS3]. A conformance profile corresponds to a class of compliant applications. This version of the ENTSOG AS4 Profile is based on an extended subset of the AS4 ebHandler Conformance Profile and a Usage Profile. It aims to support business processes such as Capacity Allocation Mechanism [CAM] and Nomination [NOM], in which documents are to be transmitted securely and reliably to Receivers with a minimal delay.

2.2 ENTSOG AS4 ebHandler Feature Set

The ENTSOG AS4 feature set is, with some exceptions, a subset of the feature set of the AS4 ebHandler Conformance Profile. This section selects specific options in situations where the AS4 ebHandler provides more than one option. This section is addressed to providers of AS4 products and can be used as a checklist of features to be provided in AS4 products. The structure of this chapter mirrors the structure of the ebMS3 Core Specification [EBMS3].

Compared to the AS4 ebHandler Conformance Profile, this profile adds, or updates, some functionality:
- There is an added recommendation to support the Two Way Message Exchange Pattern (MEP) (cf. section 2.2.1).
- Transport Layer Security processing, if handled in the AS4 handler, is profiled (cf. section 2.2.6.1).
- Algorithms specified for securing messages at the Message Layer are updated to current guidelines (cf. section 2.2.6.2).

It also relaxes some requirements:

- Support for Pull mode in AS4 will only be REQUIRED when business processes determine that Pull mode exchanges are necessary (cf. section 2.2.2).
- All payloads are exchanged in separate MIME parts (cf. section 2.2.3.2).
- Asynchronous reporting of receipts and errors is not REQUIRED (cf. sections 2.2.4, 2.2.5).
- WS-Security support is limited to the X.509 Token Profile (cf. section 2.2.6.2).

2.2.1 Messaging Model

This profile constrains the channel bindings of message exchanges between two AS4 Message Service Handlers (MSHs), one of which acts as Sending MSH and the other as the Receiving MSH. The following diagram (from [EBMS3]) shows the various actors and operations in message exchange:

![Messing Model Diagram](image.png)

Figure 1 AS4 Messaging Model
Business applications or middleware, acting as Producer, Submit message content and metadata to the Sending MSH, which packages this content and sends it to the Receiving MSH of the business partner, which in turn Delivers the message to another business application that Consumes the message content and metadata. Subject to configuration, Sending and Receiving MSH may Notify Producer or Consumer of particular events. Note that there is a difference between Sender and Initiator. For Push exchanges, the Sending MSH initiates the transmission of the message. For Pull exchanges, the transmission is initiated by the Receiving MSH.

The AS4 ebHandler Conformance Profile is the AS4 conformance profile that provides support for Sending and Receiving roles using Push channel bindings. Support is REQUIRED for the following Message Exchange Pattern:

- One Way / Push

For PMode.MEP, support is therefore REQUIRED for the following values:

- http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/oneWay

While the AS4 ebHandler does not require support for the Two-Way MEP, support for this MEP may be added in future versions of this ENTSOG AS4 profile (see section 2.3.1.3). A message handler that supports Two Way MEPs allows the Producer submitting a message unit to set the optional RefToMessageId element in the MessageInfo section in support of request-response exchanges. For PMode.MEP, support is therefore RECOMMENDED for the following value:

- http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/twoWay

For PMode.MEPbinding, support is REQUIRED for:

- http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/push

Note that these values are identifiers only and do not resolve to content on the OASIS site.

2.2.2 Message Pulling and Partitioning

Business processes currently under consideration for this version of this profile are time-critical and considered only supported by the Push channel binding, because it allows the Sender to control the timing of transmission of the message. Future versions of this profile MAY also support business processes with less time-critical timing requirements. These future uses could benefit from the ebMS3 Pull feature. For PMode.MEPbinding, applications SHOULD therefore also support:

- http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/pull

This allows implementations of this profile to also support the following Message Exchange Patterns:

- One Way / Pull
- Two Way / Push-and-Pull
- Two Way / Pull-and-Push
- Two Way / Pull-and-Pull

Note that any compliant AS4 ebHandler is REQUIRED to support the first of these options. That requirement is relaxed in this profile. The other three options combine Two Way exchanges (see section 2.2.1) with the Pull feature.

2.2.3 Message Packaging

The AS4 message structure (see Figure 2) provides a standard message header that addresses B2B requirements and offers a flexible packaging mechanism based on SOAP and MIME enveloping. Dashed line style is used for optional message components.

Figure 2 AS4 Message Structure

2.2.3.1 UserMessage

AS4 defines the ebMS3 Messaging SOAP header, which envelopes UserMessage XML structures, which provide business metadata to exchanged payloads. In AS4, ebMS3 messages other than receipts or errors carry a single UserMessage. The ENTSOG AS4 profile follows the AS4 ebHandler Conformance Profile in requiring full configurability for “General” and “BusinessInfo” P-Mode parameters as per sections 2.1.3.1 and 2.1.3.3 of [AS4].
A compliant product MUST allow the Producer, when submitting messages, to set a value for
AgreementRef, to select a particular PMode.
It MUST be able to send and receive messages in which the optional pmode attribute of
AgreementRef is not set.
The ebMS3 and AS4 specifications do not constrain the value of MessageId beyond
conformance to the Internet Message Format [RFC2822], which requires the value to be unique. It is RECOMMENDED that the value be universally unique. Products can do this by
including a UUID string in the id-left part of the identifier set using randomly (or pseudo-
randomly) chosen values.
As in the AS4 ebHandler profile, support for MessageProperties is REQUIRED in this profile.

2.2.3.2 Payloads
Section 5.1.1 of the ebMS3 Core Specification [EBMS3] requires implementations to process
both non-multipart (simple SOAP) messages and multipart (SOAP-with-attachments)
messages, and this is a requirement for the AS4 ebHandler Conformance Profile. Due to the
mandatory use of AS4 compression in this profile (see section 2.2.3.3), XML payloads are
converted to binary data, which is carried in separate MIME parts and not in the SOAP Body.
AS4 messages based on this profile always have an empty SOAP Body.
The ebMS3 mechanism of supporting “external” payloads via hyperlink references (as
mentioned in section 5.2.2.12 of [EBMS3]) MUST NOT be used.

2.2.3.3 Message Compression
The AS4 specification defines payload compression as one of its additional features. Payload
compression is a useful feature for many content types, including XML content.

- The parameter PMode[1].PayloadService.CompressionType MUST be set to the
 value application/gzip. (Note that GZIP is the only compression type currently
supported in AS4).

Mandatory use of compression is consistent with current practices for gas B2B data
exchange, such as the EASEE-gas AS2 profile [EGMTP]. Compressed payloads are in separate
MIME parts.

2.2.4 Error Handling
This profile specifies that errors MUST be reported and transmitted synchronously to the
Sender and SHOULD be reported to the Consumer.

- The parameter PMode[1].ErrorHandling.Report.AsResponse MUST be set to the
 value true.
 SHOULD be set to the value true.
2.2.5 Reliable Messaging and Reception Awareness

This profile specifies that non-repudiation receipts MUST be sent synchronously for each message type.

This profile requires the use of the AS4 Reception Awareness feature. This feature provides a built-in Retry mechanism that can help overcome temporary network or other issues and detection of message duplicates.

- The parameter `PMode[1].ReceptionAwareness` MUST be set to `true`.
- The parameter `PMode[1].ReceptionAwareness.Retry` MUST be set to `true`.
- The parameter `PMode[1].ReceptionAwareness.DuplicateDetection` MUST be set to `true`.

The parameters `PMode[1].ReceptionAwareness.Retry.Parameters` and related `PMode[1].ReceptionAwareness.DuplicateDetection.Parameters` are sets of parameters configuring retries and duplicate detection. These parameters are not fully specified in [AS4] and implementation-dependent. Products MUST support configuration of parameters for retries and duplicate detection.

Reception awareness errors generated by the Sender MUST be reported to the Submitting application:

- The parameter `PMode[1].ErrorHandling.Report.SenderErrorsTo` MUST NOT be set.

There is no support for reporting sender errors to a third party.

2.2.6 Security

AS4 message exchanges can be secured at multiple communication layers: the network layer, the transport layer, the message layer and the payload layer. The first and last of these are not normally handled by B2B communication software and therefore out of scope for this section. Transport layer security is addressed, even though its functionality MAY be offloaded to another infrastructure component.

This section provides parameter settings based on multiple published sets of best practices. It is noted that after publication of this document, vulnerabilities may be discovered in the security algorithms, formats and exchange protocols specified in this section. Such discoveries SHOULD lead to revisions to this specification.
2.2.6.1 Transport Layer Security

When using AS4, Transport Layer Security (TLS) is an option to provide message confidentiality and authentication. Server authentication, using a server certificate, allows the client to make sure the HTTPS connection is set up with the right server.

- When a message is pushed, the Sender authenticates Recipient’s server to which the message is pushed.
- When a message is pulled, the Receiver authenticates Sender’s server from which the message is pulled.

Guidance on the use of Transport Layer Security is published in the ENISA Algorithms, Key Sizes and Parameters Report 2013 [ENISAAKSP] and in a Mindest-standard of the Federal Office for Information Security (BSI) [BSITLS]. If TLS is handled by the AS4 message handler (and not offloaded to some infrastructure component), then:

- It MUST be possible to configure the accepted TLS version(s) in the AS4 message handler. The ENISA and BSI reports state that TLS 1.0 and TLS 1.1 SHOULD NOT be used in new applications. Older version such as SSL 2.0 [RFC6176] and SSL 3.0 MUST NOT be used. Products compliant with this profile MUST therefore support TLS 1.2 [RFC5246].
- It MUST be possible to configure accepted TLS cipher suites in the AS4 message handler. IANA publishes a list of TLS cipher suites [TLSSP], only a subset of which the ENISA Report considers future-proof (see [ENISAAKSP], section 5.1.2). Products MUST support cipher suites included in this subset. Vendors MUST add support for newer, safer cipher suites, as and when such suites are published by IANA/IETF.
- Support for SSL 3.0 and for cipher suites that are not currently considered secure SHOULD be disabled by default.
- Perfect Forward Secrecy, which is REQUIRED in [BSITLS], is supported by the TLS_ECDHE_* and TLS_DHE_* cipher suites, which SHOULD be supported.

If TLS is not handled by the AS4 message handler, but by another component, these requirements are to be addressed by that component (see section 2.3.4.2).

Transport Layer client authentication authenticates the Sender (when used with the Push MEP binding) or Receiver (when used with Pull). Since this profile uses WS-Security for message authentication (see section 2.2.6.2), the use of client authentication at the Transport Layer can be considered redundant. Whether or not client authentication is to be used depends on the deployment environment (see section 2.3.4.2). To support deployments that do require client authentication, products MUST allow Transport Layer client authentication to be configured for an AS4 HTTPS endpoint.
2.2.6.2 Message Layer Security

To provide message layer protection for AS4 messages, this profile REQUIRES the use of the following Web Services Security version 1.1.1 OASIS Standards, profilled in ebMS3.0 [EBMS3] and AS4 [AS4]:

- Web Services Security SOAP Message Security [WSSSMS].
- Web Services Security X.509 Certificate Token Profile [WSSX509].
- Web Services Security SOAP Message with Attachments (SwA) Profile [WSSSWA].

The X.509 Certificate Token Profile supports signing and encryption of AS4 messages. This profile REQUIRES the use of X.509 tokens for message signing and encryption, for all AS4 exchanges. This is consistent with current practice in the gas sector, as specified in the EASEE-gas AS2 profile [EGMTP]. The AS4 option of using Username Tokens, which is supported in the AS4 ebHandler Conformance Profile, MUST NOT be used.

AS4 message signing is based on the W3C XML Signature recommendation. AS4 can be configured to use specific digest and signature algorithms based on identifiers defined in this recommendation. At the time of publication of the AS4 standard [AS4], the current version of W3C XML Signature was the June 2008, XML Signature, Second Edition specification [XMLDSIG]. The current version is the April 2013, Version 1.1 specification [XMLDSIG1], which defines important new algorithm identifiers, including identifiers for SHA2, and deprecates SHA1, in line with guidance from ENISA [ENISAAKSP].

This ENTSOG AS4 profile uses the following AS4 parameters and values:

- The `PMode[1].Security.X509.Sign` parameter MUST be set in accordance with section 5.1.4 and 5.1.5 of [AS4].

This anticipates an update to the AS4 specification to reference this newer specification that has been identified as part of the OASIS AS4 maintenance work.

For encryption, WS-Security leverages the W3C XML Encryption recommendation. The following AS4 configuration options configure this feature:

- The `PMode[1].Security.X509.Encryption.Encrypt` parameter MUST be set in accordance with section 5.1.6 and 5.1.7 of [AS4].

AS4 also references an older version of XML Encryption than the current one ([XMLENC] instead of [XMLENC1]). However, the AES 128 algorithm [AES] was already referenced in that
earlier version. AES is fully consistent with current recommendations for “near term” future system use [ENISAKSP]. However, the newer W3C specification recommends AES GCM strongly over any CBC block encryption algorithms.

Key Transport algorithms are public key encryption algorithms especially specified for encrypting and decrypting keys, such as symmetric keys used for encryption of message content. No parameter is defined to support configuration of key transport in [EBMS3].

Implementations are RECOMMENDED to support the following algorithms:

- For encryption method algorithm, http://www.w3.org/2009/xmlenc11#rsa-oaep. This is the algorithm used as value for the Algorithm attribute of xenc:EncryptionMethod on xenc:EncryptedKey.
- As mask generation function, http://www.w3.org/2009/xmlenc11#mgf1sha256. This is the algorithm used as value for the Algorithm attribute of xenc:MGF in xenc:EncryptionMethod.
- As digest generation function, http://www.w3.org/2001/04/xmlenc#sha256. This is the algorithm used as value for the Algorithm attribute on ds:DigestMethod in xenc:EncryptionMethod.

2.2.7 Networking

AS4 communication products compliant with this profile MUST support both IPv4 and IPv6 and MUST be able to connect using either IP4 or IPv6. To support transition from IPv4 to IPv6, products SHOULD support the “happy eyeballs” requirements defined in [RFC6555].

2.2.8 Configuration Management

ENTSOG has identified a requirement for automated exchange and management of AS4 configuration data in order to allow parties to negotiate and automate updates to AS4 configurations using the exchange of AS4 messages. The main initial requirement is the automated exchange of X.509 certificates. As a prerequisite for an anticipated future agreement update protocol specification for AS4, AS4 products MUST provide an Application Programming Interface (API) to create, read, update and delete AS4 configuration data, including Processing Mode definitions and X.509 certificates used for AS4 message exchanges. In this version of this Usage Profile the API and associated data formats are not required to follow any standard.

Based on the ENTSOG requirement, an XML schema for Agreement Updates [AU] has been submitted to the OASIS ebCore Technical Committee for standardization. This proposal is similar to, but different from, earlier work in the IETF defining a Certificate Exchange Message for EDIINT [CEM]. The final outcome of standardisation is not yet available and the XML schema in any future OASIS specification may differ in incompatible ways from the submitted draft. In this version of this Usage Profile, AS4 products are therefore NOT REQUIRED to implement the draft.
2.3 Usage Profile

This section contains implementation guidelines that specify how products that comply with the requirements of the ENTSOG AS4 ebHandler (section 2.2) SHOULD be configured and deployed. This is similar to the concept of Usage Agreements in section 5 of [AS4] as it does not constrain how AS4 products are implemented, but rather how they are configured and used. The audience for this section are operators/administrators of AS4 products and B2B integration project teams. The structure of this chapter also partly mirrors the structure of [EBMS3], and furthermore covers some aspects outside core pure B2B messaging functionality.

2.3.1 Message Packaging

This usage profile constrains values for several elements in the AS4 message header.

2.3.1.1 Party Identification

When exchanging messages in compliance with this profile, parties registered in the ENTSOG Energy Identification Coding Scheme (EIC) for natural gas transmission MUST be identified using the appropriate EIC Code [EIC]. Entities that do not have an EIC code and need to use this profile MUST contact ENTSOG or their local issuing office (LIO) and request an EIC code. This value MUST be used as the content for the PMode.Initiator.Party and PMode.Responder.Party processing mode parameters, which AS4 message handlers use to populate the UserMessage/PartyInfo/{From|to}/PartyId elements.

Note that AS4 party identifiers identify the communication partner. The communication partner may be:

1. The entity involved in the business transaction
2. A third party providing B2B communication services for other entities

In the second case, there are two options for setting the P-Mode parameters:

1. The communication partner may impersonate the business entity. In this case the AS4 Party identifier is the identifier of the business entity.
2. The business entity may explicitly delegate message processing to the communication partner. In this case the AS4 Party identifier is the identifier of the communication partner. Note that, when used to exchange EDIG@S documents, in this case the AS4 party identifier will differ from the value of the EDIG@S {issuer/recipient}_MarketParticipant.identification elements, as the latter refer to the business partner.

Parties MAY use third party communication providers for AS4 communication. Such providers MAY use either the impersonation or delegation model, subject to approval by the business transaction partner.

The AS4 processing layer will validate the identifiers of Sender and Receiver specified in the ebMS3 headers against P-Mode configurations. This involves the validation of message signatures against configured X.509 certificates. In case of delegation, the X.509 certificates
used at the AS4 level relate to the communication partners rather than to business partners on whose behalf the messages are exchanged. The exchanged payloads (EDIG@S or other) typically also reference sending and receiving business entities. The responsibility of determining the validity of implied delegation relations between business document layer entities and entities at the AS4 layer is not in scope for the AS4 message handler, but SHOULD be addressed in business applications or integration middleware.

In AS4, it is possible to qualify the Party identifier value using a Party type attribute. EIC code values are sufficiently distinct from other codes to not require disambiguation, and this profile does not support other identifier types. Therefore, the type attribute MUST NOT be used.

2.3.1.2 Business Process Alignment

Several mandatory headers in AS4 serve to carry metadata to align a message exchange to a business process or to a technical service.

2.3.1.2.1 Service

The Service and Action header elements in the UserMessage/CollaborationInfo group relate a message to the business process the message relates to and the roles that sender and receiver perform, or to a technical service. This Usage Profile is intended to be used with business processes that are currently being modelled by ENTSOG and EASEE-gas as well as future, possibly not yet identified, business processes. For current and future gas business processes, ENTSOG maintains and publishes, on its public Web site, a link to a table of Service and Action values to be used in AS4 messages compliant to this Usage Profile (see section 2.3.1.2.4).

- For gas business processes, the value content of Service is specified in the ENTSOG AS4 Mapping Table (section 2.3.1.2.4) which MUST be used for AS4 messages carrying specified messages. These values are taken from an EDIG@S process area code list. As not all EDIG@S message exchanges concern TSOs, it may be that not all Service values that are needed to fully cover the EDIG@S processes are in the table. The values are constrained to be consistent with [EBMS3], section 5.2.2.8, which requires the values to be a URI if no type attribute is present, but does not require the value to be an absolute URI. The example message in section 3 uses the value A06, which is an EDIG@S code representing Nomination and Matching Processes.

- For services not related to gas business processes, or not related to gas business processes covered by EDIG@S, no convention is defined in or imposed by this Usage Profile. For example, the pre-defined test service (see section 2.3.6) has an absolute Service URI value defined in [EBMS3]. The ENTSOG list (or future versions of it) MAY specify other non-gas business services.

- For gas business processes, the optional type attribute of Service MUST NOT be used. For other services, the use (or non-use) of the type attribute on Service is not constrained by this Usage Profile.
2.3.1.2.2 Action

The Action header identifies an operation or activity in a Service.

- For gas business processes in which EDIG@S XML documents are exchanged, ENTSOG provides a value table listing actions (section 2.3.1.2.4). The value for Action in that table for a particular exchange MUST be used in AS4 messages. The example message in section 3 uses the http://docs.oasis-open.org/ebxml-msg/as4/200902/action value, which is the default action defined in section 5.2.5 of the AS4 standard [AS4]. As not all EDIG@S message exchanges concern TSOs, it may be that not all Action values that are needed to fully cover the EDIG@S business processes are in the service metadata table.

- For services not related to gas business processes, and for any (hypothetical future) gas business processes not covered by EDIG@S, no convention is defined in or imposed by this Usage Profile. For example, the pre-defined test service (see section 2.3.6) has an absolute Action URI value defined in [EBMS3].

2.3.1.2.3 Role

The mandatory AS4 headers UserMessage/PartyInfo/ {From|To}/Role elements define the role of the entities sending and receiving the AS4 message for the specified Service and Action.

- For gas business processes covered by EDIG@S, the values MUST be set to values specified in the ENTSOG AS4 Mapping Table (section 2.3.1.2.4). For gas business processes, that table will relate to information in the EDIG@S document content. In EDIG@S, the sender and receiver role are expressed as EDIG@S header elements. For example, in an EDIG@S v5.1 Nomination document, these are called issuer_Marketparticipant_marketRole.code of type IssuerRoleType and recipient_Marketparticipant_marketRole.code of type PartyType.

- For services not related to gas business processes, or services not covered by EDIG@S, no convention is defined in or imposed by this Usage Profile. For example, the ebMS3 test service MUST use the default initiator and responder roles defined in section 5.2.5 of [AS4].

2.3.1.2.4 ENTSOG AS4 Mapping Table

ENTSOG maintains and publishes, in a machine-processable format, in collaboration with EASEE-gas, the ENTSOG AS4 Mapping Table containing columns for the following values:

- EDIG@S process category (e.g. A06 Nomination and Matching).
- EDIG@S XML document schema (e.g. NOMINT).
- Document type element code for the type child element of the EDIG@S document root element (e.g. ANC).
494 • Document type value defined for the document type element code in the EDIG@S XML schema (e.g. *Forwarded single sided nomination*).
495
496 • **Service** value to use in an AS4 message carrying the EDIG@S document (configured as the PMode[1].BusinessInfo.Service PMode parameter). For gas industry exchanges, the values identify the gas business services that TSOs provide to each other and to other communication partners.
497
498 • **Action** value to use in an AS4 message carrying the EDIG@S document (configured as the PMode[1].BusinessInfo.Action PMode parameter). For exchanges that are modelled in a service-oriented approach, the values identify the operations or activities in a service. For exchanges that are not modelled in a service-oriented approach, the default action `http://docs.oasis-open.org/ebxml-msg/as4/200902/action` specified in the AS4 standard [AS4] will be used.
499
500 • **From/Role** to use in an AS4 message carrying the EDIG@S document (configured as the AS4 PMode.Initiator.Role PMode parameter). This value matches the EDIG@S `recipient_Marketparticipant_marketRole.code` (e.g. ZSH). Corresponding sender role code value (e.g. *Shipper*)
501
502 • **To/Role** to use in an AS4 message carrying the EDIG@S document (configured as the AS4 PMode.Responder PMode parameter). This value matches the EDIG@S `issuer_Marketparticipant_marketRole.code` (e.g. ZSO). Corresponding receiver role code value (e.g. *Transit System Operator*)
503
504 Implementations of this profile MUST use the **Service, Action, From/Role** and **To/Role** values to use specified in this table.
505
506 AS4 Role values MUST indicate business roles. If a Service Provider sends or receives messages on behalf of some other organisation (whether in a delegation or impersonation mode), the AS4 role values used relates to the business role of that other organisation.
507 There is no separate role value for Service Providers.
508
509 **2.3.1.3 Message Correlation**
510
511 AS4 provides multiple mechanisms to correlate messages within a particular flow.
512
513 1. **UserMessage/MessageInfo/RefToMessageId** provides a way to express that a message is a response to a single specific previous message. The `RefToMessageId` element is used in response messages in Two Way message exchanges. Whether two exchanges in a business process are modelled as a Two Way exchange or as two One Way exchanges is a decision made in the Business Requirements Specification for the business process. In this version of this Usage Profile, all exchanges are considered One Way.
514
515 2. **UserMessage/CollaborationInfo/ConversationId** provides a more general way to associate a message with an ongoing conversation, without requiring a message to be a response to a single specific previous message, but allowing update messages to existing conversations from both Sender and Receiver of the original message.
In this version of this Usage Profile, the following rules shall apply:

1. **UserMessage/MessageInfo/RefToMessageId** MUST NOT be used. The default exchange is the One Way exchange.

2. **UserMessage/CollaborationInfo/ConversationId** MUST be included in any AS4 message (as it is a mandatory element) with the content as an empty string.

The **RefToMessageId** and **ConversationId** elements may be used in future versions of this Usage Profile, for example to support request-response interactions.

2.3.2 Agreements

The **AgreementRef** element is profiled as follows:

- The element MUST be present in every AS4 message.
- Its value MUST be agreed between each pair of gas industry parties exchanging AS4 messages conforming to this profile.
- Its value MUST unambiguously identify Sender’s X.509 signing certificate and Receiver’s X.509 encryption certificate. In other words, if two AS4 messages compliant with this Usage Profile have the same value for this element, they are signed using the same mutually known and agreed signing certificate and their payloads are encrypted using the same mutually known and agreed encryption certificate. This is a deployment constraint on PMode configurations.
- The attributes *pmode* and *type* MUST NOT be set.

Furthermore:

- It is REQUIRED that for every tuple of `<From/PartyId, From/Role, To/PartyId, To/Role, Service, Action, AgreementRef>` values, a unique processing mode is configured. This is another deployment constraint on PMode configurations.
- For a tuple of `<From/PartyId, From/Role, To/PartyId, To/Role, Service, Action>` values, organisations MAY agree to configure multiple processing modes differing on other PMode parameters such as certificates used, or the URL of endpoints, for different values of **AgreementRef**. This includes the AS4 test service (see section 2.3.6), meaning two parties can verify that they have consistent and properly PMode configurations and firewalls for a particular agreement by sending each other AS4 test service messages using the corresponding **AgreementRef**.
- Parties MAY also use different values for **AgreementRef** to target AS4 gateways in different environments (see section 2.3.7), each having a different gateway endpoint URLs.

Note that according to [EBMS3] the value of **AgreementRef** MUST be a URI because the type attribute is not set. However, ebMS3 does not require the value to be an absolute URI.
2.3.3 MPC

The ebMS3 optional attribute `mpc` on UserMessage is mainly used to support the Pull feature, which is not used in the current value of this Usage Profile. Therefore, the use of `mpc` is profiled. The attribute:

- MAY be present in the AS4 UserMessage. If this is the case, it MUST be set to the value `http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultMPC`, which identifies the default MPC, and therefore MUST NOT be set to some other value
- MAY be omitted from the AS4 UserMessage. This is equivalent to it being present with the default MPC value

2.3.4 Security

This section describes configuration and deployment considerations in the area of security.

2.3.4.1 Network Layer Security

This profile is intended to support exchange of AS4 messages using either the public Internet or private data networks for communication. When using the public Internet, each organisation is individually responsible to implement security measures to protect access to its IT infrastructure. Data exchange may use IPv4 or IPv6.

Organisations SHOULD use firewalls to restrict incoming or outgoing message flows to specific IP addresses, or address ranges. This prevents unauthorised hosts from connecting to the AS4 communication server. Organisations therefore:

- MUST use static IP addresses (or IP address ranges) for inbound and outbound AS4 HTTPS connections.
- MUST communicate all IP addresses (or IP address ranges) used for outgoing and incoming connections to their trading partners, also covering addresses of any passive nodes in active-passive clusters. Note that the address of the HTTPS endpoint which an AS4 server is to push messages to or pull messages from MAY differ from the address (or addresses) used for outbound connections.
- MUST notify their trading partners about any IP address changes sufficiently in advance to allow firewall and other configuration changes to be applied.

2.3.4.2 Transport Layer Security

The Transport Layer Security settings defined in section 2.2.6.1 MAY be implemented in the AS4 communication server but TLS MAY also be offloaded to a separate infrastructure component (such as a firewall, proxy server or router). In that case, the recommendations on TLS version and cipher suites of 2.2.6.1 MUST be addressed by that component.

The X.509 certificate used by such a separate component MAY follow the requirements of section 2.3.4.4, but this is NOT REQUIRED.
The TLS cipher suites recommended in section 2.2.6.1 are supported in recent versions of TLS toolkits and which therefore are available for use. Support for these suites is RECOMMENDED. Whether or not less secure cipher suites (which are only recommended for legacy applications) are allowed is a local policy decision.

This profile does NOT REQUIRE the use of client authentication. Client authentication MAY be a requirement in the networking policy of individual organisations that the AS4 deployment needs to meet, but is NOT RECOMMENDED.

2.3.4.3 Message Layer Security

The following parameters control configuration of security at the message layer:

- The PMode[1].Security.X509.Signature.Certificate parameter MUST be set to a value matching the requirements specified in section 2.3.4.4.
- The PMode[1].Security.X509.Encryption.Certificate parameter MUST be set to a value matching the requirements specified in section 2.3.4.4.

2.3.4.4 Certificates and Public Key Infrastructure

In this Usage Profile, X.509 certificates are used to secure both Transport Layer and Message Layer communication. Requirements on certificates can be sub-divided into three groups:

- General requirements;
- Requirements for Transport Layer Security;
- Requirements for Message Layer Security.

The following general requirements apply to all certificates:

- A three year validity period for end entity certificates is RECOMMENDED.
- Guidance on size for RSA public keys for future system use indicates a key size of 2048 bits [BSIALG] or even 3072 bits [ENISAAKSP] is appropriate. Keys with size less than 2048 bits MUST NOT be used.
- The signature algorithm used to sign public keys MUST be based on at least the SHA-256 hashing algorithm.

The following additional requirements apply for certificates for Transport Layer Security:

- TLS server certificates for use in production environments MUST be issued by a Certification Authority (CA). This CA SHOULD meet the requirements specified in [EN 319 411-1].
- No additional requirements are placed on TLS client certificates.

The following additional requirements apply for certificates for Message Layer Security:

- The Message Layer Security certificates for use in production environments MUST be issued by a Certification Authority (CA).
Organisations MAY use certificates issued by EASEE-gas.

Use of certificates issued by another Certification Authority is subject to review by ENTSOG. The issuing CA SHOULD meet the “Normalised” Certificate Policy requirements specified in [EN 319 411-3]. A sample certificate profile is provided in section 2.3.4.5. It follows the EASEE-gas convention of including the party EIC code (see section 2.3.1.1) as value for the Common Name.

The type of certificates MUST be certificates for organisations, for which proof of identity is required (often referred to as “Class 2” certificates).

B2B document exchange typically occurs in a community of known entities, where communication between parties and counterparties is secured using pre-agreed certificates. Such an environment is different from open environments, where certificates establish identities for (possibly previously unknown) entities and Certification Authorities play an essential role to establish trust. Entities MUST proactively notify all communication partners of any updates to certificates used, and in turn MUST process any certificate updates from their communication partners. This concerns both regular renewals of certificates at their expiration dates and replacements for revoked certificates.

Organisations MAY also use Certificate Revocation Lists (CRL) or the Online Certificate Status Protocol (OCSP). Individual companies should assess the potential impact on the availability of the AS4 service when using such mechanisms, as their use may cause a certificate to be revoked automatically and messages to be rejected.

2.3.4.5 Certificate Profile

This section defines a profile for X.509 certificates to secure AS4 communication. This profile is consistent with the EASEE-gas certificate profile. For specific requirements, see [ENISAAKSP] and [TS119312].

2.3.4.5.1 Key Size

<table>
<thead>
<tr>
<th>Entity</th>
<th>Algorithm</th>
<th>Keylength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root-CA</td>
<td>RSA</td>
<td>Dependent on maximum lifetime of certificate: For 3 years: minimum of 2048 bits For 6 years: minimum of 3072 bits For 10 years: minimum of 4096 bits</td>
</tr>
<tr>
<td>Sub-CA</td>
<td>RSA</td>
<td>Minimum of 2048 bits, assuming a maximum lifetime of 3 years for end entity certificates.</td>
</tr>
<tr>
<td>End-Entities</td>
<td>RSA</td>
<td></td>
</tr>
</tbody>
</table>

2.3.4.5.2 Key Algorithm

<table>
<thead>
<tr>
<th>Entity</th>
<th>Signing Algorithm</th>
<th>O.I.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root-CA</td>
<td>sha256WithRSAEncryption</td>
<td>1.2.840.113549.1.1.11</td>
</tr>
<tr>
<td>Sub-CA</td>
<td>sha256WithRSAEncryption</td>
<td>1.2.840.113549.1.1.11</td>
</tr>
</tbody>
</table>
2.3.4.3 Naming

The following example uses the ENTSOG name as CA. This is only provided as an illustration.

ENTSOG does not currently intend to become a Certification Authority.

<table>
<thead>
<tr>
<th>Entity</th>
<th>Example Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root-CA</td>
<td>C=BE O=ENTSOG CN=ENTSOG CA</td>
<td>ISO country code (ISO 3166) Name of the Organisation Name of the CA</td>
</tr>
<tr>
<td>Sub-CA</td>
<td>C= O= OU= CN=</td>
<td>ISO country code (ISO 3166) Name of the Organisation Name of the organisational unit Name of the sub-CA</td>
</tr>
</tbody>
</table>

2.3.4.4 Certificate Body

<table>
<thead>
<tr>
<th>Certificate Component</th>
<th>Example Value</th>
<th>Presence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>TBSCertificate</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>v3</td>
<td>M</td>
<td>X.509 version 3 is usually required.</td>
</tr>
<tr>
<td>serialNumber</td>
<td>Unique number</td>
<td>M</td>
<td>A unique CA generated number</td>
</tr>
<tr>
<td>Signature</td>
<td></td>
<td>M</td>
<td>The calculated signature (for instance the sha256 value encrypted with RSA key with length 4096)</td>
</tr>
<tr>
<td>validity.notBefore</td>
<td>Date</td>
<td>M</td>
<td>The start date of the certificate</td>
</tr>
<tr>
<td>validity.notAfter</td>
<td>Date</td>
<td>M</td>
<td>The end date of the certificate, at most 3 years after the start date (for end-entities).</td>
</tr>
<tr>
<td>issuer.countryName</td>
<td>BE</td>
<td>M</td>
<td>The country code of the country where the CA resides (ISO 3166)</td>
</tr>
<tr>
<td>issuer.organisationName</td>
<td>ENTSOG</td>
<td>M</td>
<td>Example, if ENTSOG is the CA</td>
</tr>
<tr>
<td>issuer.commonName</td>
<td>ENTSOG CA</td>
<td>M</td>
<td>Example, if ENTSOG is the CA</td>
</tr>
<tr>
<td>subject.countryName</td>
<td>BE</td>
<td>M</td>
<td>ISO country code (ISO 3166)</td>
</tr>
<tr>
<td>subject.organisationName</td>
<td>Fluxys</td>
<td>M</td>
<td>Name of member organisation</td>
</tr>
<tr>
<td>subject.organisationUnit</td>
<td></td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>subject.serialNumber</td>
<td>Unique number</td>
<td>M</td>
<td>A unique CA generated number</td>
</tr>
<tr>
<td>subject.commonName</td>
<td>EIC code</td>
<td>M</td>
<td>Preferably the EIC code. Depends on what the CA allows.</td>
</tr>
<tr>
<td>subjectPublicKeyInfo.Algorithm</td>
<td>RsaEncryption</td>
<td>M</td>
<td>The encryption algorithm, at least RSA.</td>
</tr>
<tr>
<td>subjectPublicKeyInfo.Subject</td>
<td></td>
<td>The public key of the subject.</td>
<td></td>
</tr>
</tbody>
</table>
tPublicKey Extensions

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
<th>constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>signatureAlgorithm</td>
<td>sha2WithRSAEncryption</td>
<td>At least SHA-2 is required. SHA-1 is not allowed.</td>
</tr>
<tr>
<td>signatureValue</td>
<td>Signature of ENTSOG CA</td>
<td>The digital signature value.</td>
</tr>
</tbody>
</table>

2.3.4.5.5 Extensions Signing and Encryption End Entities

<table>
<thead>
<tr>
<th>Extension Name</th>
<th>Ref RFC 5280</th>
<th>Sign end entity</th>
<th>Encrypt end entity</th>
<th>TLS Client / Server end entity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuthorityKeyIdentifier</td>
<td>4.2.1.1</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>keyIdentifier</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>authorityCertIssuer</td>
<td></td>
<td>M</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>authorityCertSerialNumber</td>
<td></td>
<td>M</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>SubjectKeyIdentifier</td>
<td>4.2.1.2</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>subjectKeyIdentifier</td>
<td></td>
<td>M</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>KeyUsage</td>
<td>4.2.1.3</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>digitalSignature</td>
<td></td>
<td>M</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>nonRepudiation</td>
<td></td>
<td>M</td>
<td>x</td>
<td>x</td>
<td>Recommended; note that some CAs limit this extension to qualified certificates for natural persons.</td>
</tr>
<tr>
<td>keyEncipherment</td>
<td></td>
<td>x</td>
<td>M</td>
<td>M</td>
<td>In WS-Security the certificate is used to encrypt a symmetric encryption key; it is not used directly to encrypt message data.</td>
</tr>
<tr>
<td>dataEncipherment</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>keyAgreement</td>
<td></td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>keyCertSign</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Only for CA root and sub-CA certificates.</td>
</tr>
<tr>
<td>cRLSign</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Only for CA CRL publishing.</td>
</tr>
<tr>
<td>encipherOnly</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>decipherOnly</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>CertificatePolicies</td>
<td>4.2.1.4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>PolicyMappings</td>
<td>4.2.1.5</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>SubjectAltName</td>
<td>4.2.1.6</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Extension Name</td>
<td>Ref RFC 5280</td>
<td>Sign end entity</td>
<td>Encrypt end entity</td>
<td>TLS Client / Server end entity</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>otherName</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRUE if applicable.</td>
</tr>
<tr>
<td>otherName.type-id</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OID = 1.3.6.1.4.1.311.20.2.3 Preferably the subjectserialnumber followed by ENTSOG serialnumber</td>
</tr>
<tr>
<td>IssuerAltName</td>
<td>4.2.1.7</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>SubjectDirectoryAttributes</td>
<td>4.2.1.8</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>BasicConstraints</td>
<td>4.2.1.9</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td>False</td>
<td>False</td>
<td>False</td>
<td></td>
</tr>
<tr>
<td>PathLenConstraint</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>NameConstraints</td>
<td>4.2.1.10</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>AuthorityInfoAccess</td>
<td></td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>The URL of the OCSP responder.</td>
</tr>
<tr>
<td>PolicyConstraints</td>
<td>4.2.1.11</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>ExtKeyUsage</td>
<td>4.2.1.12</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td>See next table.</td>
</tr>
<tr>
<td>CRLDistributionPoints</td>
<td>4.2.1.13</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>The URL of the CRL.</td>
</tr>
<tr>
<td>InhibitAnyPolicy</td>
<td>4.2.1.14</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>FreshestCRL</td>
<td>4.2.1.15</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>privateInternetExtensions</td>
<td>4.2.2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

2.3.4.5.6 Extended Key Usage

<table>
<thead>
<tr>
<th>Extended Usage OID</th>
<th>Key Usage OID</th>
<th>Ref RFC 5280</th>
<th>TLS Client / Server end entity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>id-kp-clientAuth</td>
<td>4.2.1.12</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>id-kp-serverAuth</td>
<td>4.2.1.12</td>
<td>M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3.4.5.7 Certificate Lifetime

<table>
<thead>
<tr>
<th>Entity</th>
<th>Maximum Period</th>
<th>Start Refresh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root-CA</td>
<td>15 years</td>
<td>2 years before</td>
</tr>
<tr>
<td>Sub-CA</td>
<td>10 years</td>
<td>1 year before</td>
</tr>
<tr>
<td>End Entities</td>
<td>3 years</td>
<td>6 months before</td>
</tr>
</tbody>
</table>
2.3.5 Message Payload and Flow Profile

A single AS4 UserMessage MUST reference, via the PayloadInfo header, a single structured business document and MAY reference one or more other (structured or unstructured) payload parts. The business document is considered the “leading” payload part for business processing. Any payload parts other than the business document are not to be processed in isolation but only as adjuncts to the business document. Business document, attachments and metadata MUST be submitted and delivered as a logical unit. The format of the business document SHOULD be XML, but other datatypes MAY be supported in specific business processes or contexts.

For each business process, the Business Requirement Specification specifies the XML schema definition (XSD) that the business document is expected to conform to.

- In case the Action is set to the AS4 default action (see section 2.3.1.2.2) and the exchanged business document is an EDIG@S XML document, for the business document part a Property MUST be included in the PartProperties with a name EDIGASDocumentType set to the same value as the top-level type element in the EDIG@S XML document, which is of type DocumentType. The mapping from a pair of From/PartyId element and EDIGASDocumentType property values to XSDs MUST be agreed and unique, allowing Receivers to validate XML documents using a specific (version of an) XML schema for a particular receiver and document type.

- The part property EDIGASDocumentType MUST NOT be used with payloads that are not EDIG@S XML business documents.

In case the Action is not set to the AS4 default action, the mapping from Service and Action value pairs to XSDs MUST be unique, allowing Receivers to validate XML documents using a specific XML schema.

Some gas data exchanges are traditional batch-scheduled exchanges that can involve very large payloads. The trend in the industry towards service-oriented and event-driven exchanges is leading to more, and more frequent, exchanges, with smaller payloads per exchange. It is expected that the vast majority of payloads will be less than 1 MB in size (prior to compression), with rare exceptions up to 10 MB. The number of messages exchanged over a period, their distribution over time and the peak load/average load ratio, are dependent on business process and other factors. Parties MUST take peak message volumes and maximum message size into account when initially deploying AS4. Parties SHOULD also monitor trends in message traffic for existing processes and anticipate any new business processes being deployed (and the expected increases in message and data volumes), and adjust their deployments accordingly in a timely manner.

In practice, there are limitations on the maximum size of payloads that business partners can accept. These limitations may be caused by capabilities of the AS4 message product, or by constraints of the business application, internal middleware, storage or other software or hardware. When designing business processes and document schemas, and when generating content based on those schemas, these requirements SHOULD be taken into account. In particular, business processes in which large amounts of data are exchanged and...
the business applications supporting these processes SHOULD be designed such that data can be exchanged as a series of related messages, the payload size of each of which does not exceed 10 MB, rather than as a single message carrying a single large payload that could potentially be much larger.

2.3.6 Test Service

Section 5.2.2 of [EBMS3] defines a server test feature that allows an organisation to “Ping” a communication partner. The feature is based on messages with the values of:

- **UserMessage/CollaborationInfo/Service** set to `http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/service`

- **UserMessage/CollaborationInfo/Action** set to `http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/test`

This feature MUST be supported so that business partners can perform a basic test of the communication configuration (including security at network, transport and message layer, and reliability) in any environment, including the production environment. This functionality MAY be supported as a built-in feature of the AS4 product. If not, a PMode MUST be configured with these values. The AS4 product MUST be configured so that messages with these values are not delivered to any business application.

2.3.7 Environments

B2B data exchange solutions are part of the overall IT service lifecycle, in which different environments are operated (typically in parallel) for development, test, pre-production (in some companies referred to as “acceptance environments” or “QA environments”) and production. Development and test are typically internal environments in which trading partners are simulated using stubs. When exchanging messages between organisations (in either pre-production or production environments), they must target the appropriate environment. In order to prevent a configuration error from causing non-production messages to be delivered to production environments or vice versa, organisations SHOULD configure processing modes at message handlers so that messages from one type of environment cannot be accepted inadvertently by a different type of environment.
3 Example

The following non-normative example is included to illustrate the structure of an AS4 message conforming to this profile, for a hypothetical http://docs.oasis-open.org/ebxml-msg/as4/200902/action action invoked by a hypothetical shipper 21X-EU-A-XOA0Y-Z on a hypothetical service A06 exposed by a hypothetical transmission system operator 21X-EU-B-PQ0QR-S. The detailed contents of the wsse:Security header is omitted.

```
POST /as4Handler HTTP/1.1
Host: receiver.example.com:8893
User-Agent: Turia
Content-Type: multipart/related; start=<f8df1904-a6b9-422b-8239-6a971838503f@sender.example.com>
boundary="c5bae1842d1e"; type=application/soap+xml
Content-Length: 472639
--c5bae1842d1e
Content-Type: application/soap+xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE SOAP-ENV:Envelope [SOAP-ENV:schemaTypeComplex AS4UsageProfileV2R0>>]

<SOAP-ENV:Header>
  
  </SOAP-ENV:Header>

<SOAP-ENV:Body>
  
  </SOAP-ENV:Body>
```

<table>
<thead>
<tr>
<th>Line</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>811</td>
<td>Content-Transfer-Encoding: binary</td>
</tr>
<tr>
<td>812</td>
<td>BINARY CIPHER DATA</td>
</tr>
<tr>
<td>813</td>
<td>--c5bae1842d1e--</td>
</tr>
<tr>
<td>814</td>
<td></td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Editor</th>
<th>Changes Made</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0r1</td>
<td>2013-10-29</td>
<td>PvdE</td>
<td>First Draft for discussion</td>
</tr>
<tr>
<td>V0r2</td>
<td>2013-11-18</td>
<td>PvdE</td>
<td>• Textual updates from discussions at F2F 2013-11-04.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Improved separation of the AS4 feature set (chapter 2.2) and the usage profile (2.3). For the feature set the audience are vendors and for the usage profile users/implementers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Provided guidance for TLS based on ENISA and other guidelines (section 2.2.6.1).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Provided guidance on WS-Security based on ENISA guidelines, advice from XML Security experts (section 2.2.6.2).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Added test service (section 2.3.6).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Added support for CL3055 (section 2.3.1.1).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Guidance on correlation is now mentioned as an option only, leaving choice between document-oriented and service-oriented exchanges (section 2.3.1.3).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• More guidance on certificates (section 2.3.4.4).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Added a section on environments (section 2.3.7).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Added an example message (section 3).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Values to be confirmed: five minutes for retries (section 2.2.5), 10 MB total payload size (section 2.3.5)</td>
</tr>
<tr>
<td>V0r3</td>
<td>2013-11-29</td>
<td>PvdE</td>
<td>• Textual updates from F2F on 2013-11-21.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Added messaging model diagram (section 2.2.1).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Add note that Pull is not required to summary (section 2.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Added a diagram of AS4 message structure (section 2.2.3).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• All payloads are carried in separate MIME parts;</td>
</tr>
</tbody>
</table>
no support for external payloads; renamed from “attachments” to “payloads” (section 2.2.3.2).

- The reference to TLS cipher suites is more general (section 2.2.6.1).
- Simplified party identifiers, only EIC codes are allowed (section 2.3.1.1).
- ENTSOG will publish Service/Action info (section 2.3.1.2).
- Guidance on correlation is left to business processes (section 2.3.1.3).
- Client authentication not recommended (section 2.3.4.2).
- No preferred CA; state the 3072 is for future applications (section 2.3.4.4).
- The test service is now in the Usage Profile as it can be provided via configuration (section 2.3.6).
- The section on separating environments is simplified (section 2.3.7).
- The usage profile on reliable messaging is removed.
- Fixed reference to BSI TLS document (section 5).

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Author(s)</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0r4</td>
<td>2013-12-04</td>
<td></td>
<td>Updates based on discussions at F2F, 2013-12-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Disclaimer added.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In 2.2.1, explained Sender-Receiver concepts are orthogonal to Initiator-Responder.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated guidance on payload size.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Added RFC 6176 reference.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Improved wording on environments.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Anonymous EIC codes in example.</td>
</tr>
<tr>
<td>V0r5</td>
<td>2013-12-06</td>
<td>PvdE</td>
<td>Draft finalized in team teleconference.</td>
</tr>
<tr>
<td>V0r6</td>
<td>2014-02-14</td>
<td>PvdE, EJvN</td>
<td>Updates based on team teleconference</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Generalized title of 2.3.4.4 and updated content to reflect the new appendix on certificate</td>
</tr>
<tr>
<td>Version</td>
<td>Date</td>
<td>Author</td>
<td>Details</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>V0r7</td>
<td>2014-04-22</td>
<td>PvdE</td>
<td>Added reference to [BSIALG].</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Added discussion on key transport algorithms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated AES encryption from to http://www.w3.org/2001/04/xmlenc#aes128-cbc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to http://www.w3.org/2001/04/xmlenc#aes128-gcm following [XMLENC1].</td>
</tr>
<tr>
<td>ENISA comments:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V0r7</td>
<td>2014-04-22</td>
<td>PvdE</td>
<td>In 2.3.4.1, change use of firewalls from MAY to SHOULD.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>New section 2.2.7 which recommends IPv6.</td>
</tr>
<tr>
<td>V0r8</td>
<td>2014-07-28</td>
<td>PvdE</td>
<td>The AES-GCM encryption URI is identified using</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moved the certificate profile into the Usage Profile section.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minor editorial changes.</td>
</tr>
<tr>
<td>V0r9</td>
<td>2014-07-30</td>
<td>PvdE</td>
<td>Fixed header dates. Accepted all changes to fix Microsoft Word change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>track formatting errors.</td>
</tr>
<tr>
<td>V1r0</td>
<td>2014-09-22</td>
<td>JDK</td>
<td>Remove “draft” and “not for implementation”. Add reference to PoC in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>introduction.</td>
</tr>
<tr>
<td>V1r1</td>
<td>2015-03-05</td>
<td>PvdE</td>
<td>New draft V1r1 incorporating first updates for 2015:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o Updates on Role, Service, Action based on meeting of 2015-02-17 (section 2.3.1.2).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o Message identifiers to be universally unique (2.2.3.1).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Updated the example in section 3 accordingly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>New profiling for AgreementRef, in support of certificate rollover (section 2.2.3.1 and 2.3.2).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No need to be able to set MessageId, RefToMessageId and ConversationId as we’re not using them (section 2.2.3.1).</td>
</tr>
<tr>
<td>Version</td>
<td>Date</td>
<td>Author</td>
<td>Changes</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>----------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| V1r2 | 2015-03-09 | JM, PvdE | - Service and Action in example are changed to their coded values.
- Corrected the current EDIG@S version to 5.1.
- Various spelling corrections.
- Profiling for MPC (another feature that is not used currently).
- Added missing AgreementRef in message example.
- Changed year in timestamps in example to 2016.
- In section 2.2.1, the requirement to support Two Way MEPs no longer makes sense as it is inconsistent with the profiling of 2.3.1.3, which says that RefToMessageId is not used. Added a note that it may be added in the future. |
| V1r3 | 2015-03-18 | PvdE | - Accepted all changes up to and including v1r2 for ease of review.
- Added more clarification on Communication vs Business partners.
- Changed language on mapping table to not preclude that a future version of the table may be maintained somewhere else/by someone else.
- Removed the BRS reference from the mapping table column list.
- Added some comments on the relation (degree of overlap) between EDIG@S process categories and ENTSOG Service/Action values.
- Added some text for a change (to be confirmed) from using EDIG@S process category names instead of category numbers, and from using Document Type names instead of Document Type code, and of Role names instead of Role codes. These are marked as comments and to be processed before finalizing the document. |
| V1r4 | 2015-03-24 | PvdE | - In Service example, add a prefix [http://entsog.eu/services/EDIG@S/ to indicate |
that a Service is based on an EDIG@S service category.

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Author</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1r5</td>
<td>2015-04-02</td>
<td>PvdE</td>
<td>• Accepted all changes up to v1r4 for readability. Updates based on conference call of 2015-04-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• In section 2.3.5, introduced the EDIGASDocumentType property and added further profiling of the PartInfo element.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Renamed the Service Metadata Mapping Table to ENTSOG AS4 Mapping Table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Introduced the AS4 default action.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Changed the example in section 3 to use agreed values.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Clarified that roles are business roles in 2.3.1.2.4.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• In 2.3.5, allowed XSDs to be agreed not just per Service/Action, but also for a partner.</td>
</tr>
<tr>
<td>V1r6</td>
<td>17/04/15</td>
<td>JM</td>
<td>• Accepted some formatting changes and corrected some small editorial errors.</td>
</tr>
<tr>
<td>V1r7</td>
<td>20/04/15</td>
<td>JM</td>
<td>• Accepted all changes</td>
</tr>
<tr>
<td>V1r8</td>
<td>19/05/15</td>
<td>PvdE</td>
<td>• New section 2.2.8 on configuration management.</td>
</tr>
<tr>
<td>V1r9</td>
<td>26/5/15</td>
<td>PvdE</td>
<td>• Update on certificate requirements</td>
</tr>
<tr>
<td>V1r10</td>
<td>2/6/15</td>
<td>PvdE</td>
<td>• The part property “EDIGASDocumentType” was replaced by an incorrect value in the message example in section 3.</td>
</tr>
<tr>
<td>V1r11</td>
<td>09/06/15</td>
<td>JM</td>
<td>• Updated Service Field in message example with EDIG@S Code</td>
</tr>
<tr>
<td>V1r12</td>
<td>15/06/15</td>
<td>PvDE/JM</td>
<td>• Improved discussion of Entsog AS4 Mapping Table</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Editorial clean up</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Updated reference to Network Code to the Commission Regulation 2015/703.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Removed a reference to an unpublished</td>
</tr>
</tbody>
</table>
overview of certificate standards and requirements.

- Updated Agreement Update reference to ebCore Working Draft.

| V2r0 | 17/06/15 | JM | Revised to Version number to 2 for publication |
5 References

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Mindeststandards/Mindeststandard_BSI_TLS_1_2-Version_1.0.pdf

[EDIG@S] EASEE-gas EDIG@S. Version 5.1. http://www.EDIG@S.org/version-5/

[EN 319 411-1] Draft European Standard. Electronic Signatures and Infrastructures (ESI);
Policy and security requirements for Trust Service Providers issuing certificates;
Part 1: Policy requirements for Certification Authorities issuing web site certificates, v0.0.4, 2013-11.

[EN 319 411-3] European Standard. Electronic Signatures and Infrastructures (ESI); Policy and security requirements for Trust Service Providers issuing certificates; Part 3: Policy requirements for Certification Authorities issuing public key certificates, v1.1.1, 2013-01. (Formerly [ETSI TS 102 042])
http://www.etsi.org/deliver/etsi_EN/319400_319499/31941103/01.01.01_60/EN_31941103v010101p.pdf

