Setting Up an AS4 System

Version 1r0 – 2015-05-19
Table of contents

1 Introduction .. 3
2 AS4 Communication Concept .. 4
 2.1 Data Exchange Concepts .. 4
 2.2 Data Exchange Layers ... 4
2.3 B2B Gateway Concept .. 5
2.4 B2B Gateway Requirements ... 6
2.5 Benefits of a B2B Gateway .. 7
2.6 Sample AS4 Gateway System Perspective ... 7
3 Deploying AS4 .. 10
 3.1 Selecting an AS4 Gateway .. 10
 3.2 Initial Deployment .. 10
 3.2.1 Internal Integration ... 11
 3.2.2 External Integration .. 11
 3.3 How to Set up a Connection ... 12
 3.3.1 Initial Configuration of a Communication Partner ... 12
 3.3.2 Configuring a Partner for a Service ... 13
 3.4 Updating Configurations and Certificates .. 13
 3.5 Using a Service Provider ... 13
4 References ... 15

Page 2 of 15
1 Introduction

This document is aimed at users that need to set up the AS4 protocol in their organisations and need a basic understanding of how B2B communication using AS4 fits in IT environments. It explains, at a high level, the concepts of communication using the AS4 protocol [AS4], describes the communication layer in an AS4 data exchange and explains the concept of a B2B Gateway. Some general requirements on B2B gateways are presented and the benefits of using a B2B gateway are explained. Finally, a sample deployment scenario is presented.

The purpose of this document is to provide general high-level information on B2B document exchange and its position in the enterprise IT landscape. Furthermore, it describes key steps that organisations need to take to implement AS4 in their organisation.

This document is informative only. It may be used as a guideline or good practice and provides some example setups, but does not mandate a particular way of implementing AS4. Most of this document covers generic B2B communication topics that are not tied to any distinguishing feature of the AS4 protocol.

The audience for this document are IT managers, B2B integration project teams and IT infrastructure managements that are starting to implement AS4 in their organisations, with a focus on Transmission System Operators for gas that will implement the ENTSOG AS4 Usage Profile for TSO [AS4TSO]. It does not cover the AS4 standard or the ENTSOG usage profile in any detail.
2 **AS4 Communication Concept**

2.1 **Data Exchange Concepts**

The AS4 protocol supports the concept of *document-based* data exchange. This is a model where enterprises in a market collaborate and synchronise their business processes at specific agreed process steps. The synchronisation involves the exchange of information between enterprises as *business documents*. Documents are encoded in a structured format that is standardised in the sector (like EASEE-gas EDIG@S-XML) or otherwise agreed. Business documents are exchanged using B2B communication protocols (like AS4) using agreed implementation guidelines. The ENTSOG AS4 Usage Profile is an example of such an implementation guideline for AS4. Because of the requirements in the business processes it is needed to assure the integrity and identify the sender of the document, therefore security measures have to be taken and implemented.

In document-based data exchange, the exchanged information is produced and consumed by business applications. This is a key difference with paper-based communication, electronic mail or using Web portals, all of which require human intervention.

2.2 **Data Exchange Layers**

In data exchange, a distinction can be made between the business operational view (the *what*) and the IT functional service view (the *how*). Market rules and regulations determine the business process and activities, from which in turn the structure and content of the information to be exchanged follows. The Information Technology view is concerned with the exchange of information across a public or (virtual) private computer network using message exchange protocols. These layers can be visualised as in Figure 1.
2.3 **B2B Gateway Concept**

It is a common practice in data exchange to not directly connect one’s business applications to business applications of one’s counterparties, but to use architectural components called **B2B Gateways**, which are responsible for document-based B2B data exchange. A B2B gateway serves as an intermediary between an enterprise and its communication partners. The concept of a B2B Gateway is sufficiently common that a class of commercial off-the-shelf software products and related services exists that can be used to implement such a gateway in general and communication protocols like AS4.

A B2B Gateway has an enterprise interface and a trading partner interface and supports bidirectional communication. On the enterprise side, the gateway behaves as an application in the enterprise IT landscape and should adhere to corporate standards and support the enterprise’s private processes. On the partner side, it functions as the partner interface and should conform to the partner community standards and its public processes. Whereas the enterprise side is under the control of the organisation and closed to (possibly malicious) third parties, the partner side is not. It involves the use of third party infrastructure and public networks and therefore security and reliability require special attention.

The processing of documents by B2B gateways and Enterprise Service Bus (ESB) or other middleware (if used) is typically not immediately visible to the end-user. The end-user may therefore still have the impression that communication is directly between applications. This is visualised in Figure 2.
On the enterprise side, the B2B Gateway can be connected directly to business applications using a variety of mechanisms including enterprise communication protocols like FTP (File Transfer Protocol), messaging APIs like JMS, shared file systems or databases. However, enterprises are increasingly adopting service-oriented concepts and integrating business applications using an Enterprise Service Bus (ESB). In such a model, B2B communication is exposed by the B2B gateway to the ESB, just like business applications expose business services, and the gateway and applications are not directly connected.

2.4 B2B Gateway Requirements

A B2B gateway must support fully automatic processing. This means it must support the exchange of structured business content as well as metadata to express the purpose and requested processing.

A B2B gateway must also support secure and reliable communication, by protecting the integrity and confidentiality of content, and to authenticate the identity of sender and a receiver and to support non-repudiation of origin and receipt.

B2B Communication should be based on open standards, and independent of specific vendor products. Transmission System Operators should be able to procure solutions in a competitive environment. AS4 is such an open standard and is implemented by a variety of solutions. The ENTSOG AS4 Usage Profile provides additional detailed guidance and interoperability; it limits the configuration options and usage to a defined set.
2.5 Benefits of a B2B Gateway

A B2B gateway decouples the IT systems of a party and its counterparty and therefore supports interoperability at the business process layer amongst organisations that use IT systems that may be very different. The decoupling covers a range of aspects:

- At the network (security) layer, the gateway is connected externally (to partner gateways) and internally (to enterprise IT), obviating the need for direct network connectivity between enterprise systems and partner systems. This simplifies configuration and management of partner connectivity. Only the gateway needs to know about IP addresses, ports and transport layer security configuration for specific partners.

- At the application layer, the gateway intermediates between internal systems and trading partners. Trading partner do not need to know which business application is responsible for handling specific messages, as the gateway (or ESB) is responsible for routing messages appropriately. AS4 support such routing by providing rich metadata.

- At the communication protocol layer, the gateway is responsible for selecting the communication protocol to use for a partner and message type. Communication may switch from older protocols to newer (e.g. from AS2 to AS4) without any the need for reconfiguring business applications. Similarly, an enterprise can drastically change its internal integration (e.g. introducing an ESB or switching from one type of middleware to another) without impacting its trading partner.

- At the business content layer, some B2B gateway products support the mapping of document formats, or version of formats. For example, they may transform XML to in-house formats or transform one type of XML to another. (In some ESBs, this transformation may itself be a service that is invoked from the ESB rather than the gateway).

2.6 Sample AS4 Gateway System Perspective

A sample deployment scenario for a B2B Gateway is displayed in Figure 3 Sample System Perspective. This diagram illustrates how an AS4 gateway may be implemented and may fit in an enterprise IT landscape, not precluding other possible alternative architectural options.
The AS4 gateway, in this sample scenario, is separated from the Internet by an External Firewall, which is configured to allow communication with communication partners, for which the IP addresses are known. A separate firewall separates the AS4 Gateway from the organisation’s internal business systems (possible connected using an ESB or other middleware) and end user computers. No direct communication is possible from external systems to the internal systems.

The diagram also shows the use of a backup data centre, which mirrors the main datacentre. It has a separate Internet connection and an AS4 gateway that can take over from the main gateway for failover. Of course measures should be taken towards the internal business systems to synchronise between main and backup datacentres in order to guarantee business continuity and no loss of data. In case of a switchover, the partners should not need to change anything in their systems. Established mechanisms exist to handle such events. They are not dependent on AS4 or B2B messaging in general, and will therefore not be elaborated on in this document. The approach illustrated in this diagram is a good practice of a so-called active-passive cluster configuration.

Another option is to deploy multiple gateway server instances in parallel in a so-called active-active cluster configuration. The server address communicated to communication partners is the address of a load balancer that forwards incoming messages to the various
server nodes. Outgoing messages will still be sent directly from the cluster nodes to
communication partners. In addition to providing continuity in case of failure of some cluster
node (as in the active-passive model), this allows the cluster to scale out to process message
volumes that are larger than a single AS4 gateway instance could process.

When deploying a gateway product in a cluster, similar consideration apply to supporting
infrastructure such as databases and file systems used by the gateway.
3 Deploying AS4

When implementing AS4, a number of steps need to be taken; some in sequence (due to dependencies) but some of these steps can take place in parallel. Some are to be taken once, and some need to be revisited if certain events or changes occur.

3.1 Selecting an AS4 Gateway

To implement AS4, an organisation needs to deploy an AS4 gateway product. As AS4 is an open standard [AS4], organisations are in principle free to choose any conformant product that is interoperable with other available AS4 products used in the community and that otherwise meets the business or technical requirements of the organisation. Reasons for preferring one product over the other may include compatibility with other IT applications or frameworks, established vendor relations or commercial considerations and will lead to different choice in different organisations.

To support the practical implementation in the gas community, ENTSOG publishes a Usage Profile of AS4 on its public Internet site [AS4TSO] that reduces the feature set to be implemented by the AS4 product and provides interoperability guidelines. When contacting potential suppliers of AS4 solutions, TSOs should ask if the vendor supports this profile and can demonstrate experience in using its product interoperably with other vendor products. Some vendors participated in the ENTSOG interoperability proof-of-concept in 2014 and successfully demonstrated interoperability [AS4POC], and since then other vendors have implemented the profile as well.

Many organisations already deploy a B2B gateway for AS2 or other protocols. As many B2B gateway vendors support multiple B2B protocols in a single gateway product, in some cases an upgrade to a more recent version of the product, or deploying some optional module, may be all it takes to be enable an AS4 feature.

3.2 Initial Deployment

The initial deployment of an AS4 gateway consists of the installation of the AS4 gateway software, internal integration (within the enterprise) and preparations for external integration (to the communication partners). Installation of an AS4 gateway is done in a particular environment (single server or cluster) and involves some initial software configuration. For example, the gateway may require a database for which the connection properties need to be set.

The result of the initial deployment is an AS4 gateway to which message payload and metadata can be submitted, which can deliver received payloads and metadata, and which has a basic configuration (known server URL, IP address, certificates) to enable communication with partners.

Note that this initial installation and configuration step typically needs to be repeated for each environment the software is deployed in (e.g. test, pre-production, production).
3.2.1 Internal Integration

On the *internal integration* side (integration with business applications and/or middleware within the enterprise), any AS4 product offers interfaces to *submit* messages produced by enterprise applications to be sent to B2B partners and to *deliver* messages received from B2B partners to an internal consumer. The AS4 standard defines abstract operations for submitting and delivery, but the actual implementation is product-dependent.

B2B products often offer multiple interfaces, such as shared folders, APIs for certain programming languages, JMS or other enterprise messaging systems, FTP or other transport protocols, SOAP etc. Which of these an organisation should use typically depends on the approach to enterprise integration in an organisation. Many organisations adopt Enterprise Service Bus (ESB) technology to connect their business applications. In these organisations, the AS4 gateway should be connected to the ESB and use ESB services, rather than be connected to business applications directly, though the latter is an option.

When submitting payloads to be sent, a B2B gateway typically needs some metadata to know how to process the data, in particular minimally the intended recipient. Using the party identifier of the recipient, the endpoint of the recipient and other relevant parameters are retrieved from configuration so the message can be sent. Compared with other protocols like AS2, more metadata may be required for AS4 beyond the recipient party identifier, such as the Service to be addressed. The Usage Profile describes this and specifies how this metadata can be extracted (or inferred, using lookup tables) from EDIG@S content. To reuse unmodified enterprise software applications, this metadata handling should be done in an ESB or other middleware service.

3.2.2 External Integration

On the *external integration* side (integration with partners), AS4 gateway products may terminate AS4 communication from the public zone directly (as in Figure 3), or use a separate Web Server or other networking software or hardware (such as an XML Appliance). To be accessible, the AS4 gateway must be resolvable via the Internet Domain Name Service (DNS) using a static IP address. While DNS configuration changes are simple changes, they should be addressed early in the project as in large organisations they may involve different departments and change processes can take time.

Like other B2B protocols, AS4 and the ENTSOG Usage Profile rely on X.509 Digital Certificates for message-layer sender and receiver authentication, non-repudiation and confidentiality and for server (and optionally client) authentication at transport layer. The Usage Profile defines requirements on certificates to be used but does not currently mandate a specific Certificate Authority. Many TSOs and partners use certificates issued by EASEE-gas for use with AS2. In principle, these certificates can also be used with AS4 and will be readily accepted as many organisations are used to working with EASEE-gas certificates.

Organisations that want to deploy certificates from other Certificate Authorities should be aware that their counterparts may ask them to provide evidence that these authorities are trustworthy and comply with the requirements defined in the Usage Profile section 2.3.4.5. Their counterparts may find it difficult to accept certificates from authorities in case no
such evidence is provided or in case any evidence provided is difficult to verify. The latter is the case if the CA is a local certificate authority from a member state that is unknown outside the country and only publishes its certificate policy and other documentation in a local language. Organisations should also be aware that certificates issued by other Certificate Authorities may have various interoperability issues.

3.3 How to Set up a Connection

3.3.1 Initial Configuration of a Communication Partner

After the initial deployment, the next step is to connect the AS4 gateway to the organisation’s communication partners. This involves exchanging key configuration parameter sets with the partners, such as: the organisation’s party identifier, certificates, endpoint URL, and inbound and outbound IP addresses (or address ranges), and the same parameter set for the counterparty.

Firewalls must be configured to allow incoming connections from communication partners. In some organisations, outgoing connections (from all AS4 cluster nodes) must also be explicitly allowed. While, like DNS changes, firewall configuration changes are simple changes, they should be addressed early in the project as in large organisations they often involve different departments and service management change processes can be time-consuming.

Before using the established configuration for any real service, it is important to test it is configured properly. Taking advantage of its richer metadata (Service and Action headers), AS4 has a useful mechanism that allows partners to determine if their AS4 gateways can successfully exchange messages: the test service (defined in section 5.2.2 of [AS4]). Support of this feature is mandated in section 2.3.6 of the ENTSOG Usage Profile for TSOs [AS4TSO]. If a party is able to successfully send an AS4 test message to a counterparty and receive a corresponding AS4 receipt, and if the counterparty is similarly able to access the test service of the party, both party and counterparty know their AS4 configuration (party identifiers, endpoints, certificates) and network configurations (firewalls) are consistent and fully functional. In AS4, the test service is a service like any service except that AS4 test messages are never delivered to any business service but are consumed internally in the AS4 gateway. Therefore no data is accidentally delivered to any business application in any environment.

Note that if an organisation deploys multiple AS4 Gateways for different services behind an XML routing appliance (or similar component), using the test service only tests connectivity to the gateway that handles the test service. This may be acceptable if all gateways are synchronised to use the same certificate set.

If it is necessary to test connectivity to all such gateways, another header field could be configured for routing at the appliance (such as AgreementRef) to route to a specific gateway, as there is only one test service. Alternatively, it may be possible to configure the appliance to load-balance test service messages over all AS4 Gateways. The sender can then send a batch of messages to the test services to test that all gateways are functioning correctly.
It should be noted that if the Communication Partner has different AS4 Gateways for different environments (e.g. test, pre-production, production) this step needs to be done for each environment that needs to be connected with.

3.3.2 Configuring a Partner for a Service

Once AS4 communication is successfully established with the corresponding environment of the counterparty using the test service, the AS4 gateway configuration can be extended to support additional services beyond the test service. The configuration for other services will be the same as the test configuration except for Service, Action and Role values. As described in the ENTSOG Usage Profile [AS4TSO], information on the actual values to be used for services supporting specific business processes will be provided by ENTSOG for the business processes for which it provides Business Requirements Specifications (BRSs).

Also unlike the test service, payload data will be delivered to enterprise service consumers of the counterparty rather than counterparty’s AS4 gateway.

As before, it should be noted that if the Communication Partner has different AS4 Gateways for different environments (e.g. test, pre-production, production) in which the Service is implemented, this step needs to be completed for each environment that needs to be connected with.

3.3.3 Updating Configurations and Certificates

The lifecycle of all service configurations needs to be managed, i.e. new services will be provided for existing counterparties, and new counterparties may emerge. Furthermore, it may be that an organisation changes one of its technical configuration parameters for AS4, such as a server URL, a reliable messaging parameter, or an IP address. These changes need to be bilaterally agreed and coordinated.

A specific case is the update of X.509 certificates, because they have a fixed lifetime and need to be replaced once they expire. The EASEE-gas community has developed an approach to certificate replacement that assumes a coordinated “big bang” change of all certificates in the community. The ENTSOG AS4 team is working on an approach based on concepts from the (expired) IETF Certificate Exchange Message specification [CEM] for use with AS4. This will provide a way to use old and new certificate(s) in parallel and may provide an optional mechanism to automate the exchange of certificates.

3.4 Using a Service Provider

Some organisations do not operate a B2B Gateway themselves, but use communication services provided by a third party. For example, a service provider may provide a Protocol Bridge service to allow their customers to use other messaging protocols to communicate with them, and AS4 with their counterparties. If a service provider sends and receives AS4 messages on behalf of an organisation, it is the service provider that is responsible for selecting and deploying the AS4 Gateway, external integration, partner configuration and maintenance of such configurations.
As the **Party** identifiers of an AS4 message relate to the communication partner, their values will identify the service provider and will be different from the issuer and recipient parties identified in the EDIG@S XML document, which will identify the business partner. This difference must be communicated to and agreed with the partners. To support this, organisations will need to implement a lookup mechanism to map business partner identifiers to communication partner identifiers. This is explained in the section “Party Identification” in the ENTSOG Usage Profile. This table also needs to be managed, because organisations may switch from one service provider to another, or may decide to in-source or out-source AS4 connectivity after the initial connections with partners are established.
4 References

[CEM] Certificate Exchange Messaging for EDIINT