

Market modelling based CBA to support the PECI selection process in the Energy Community

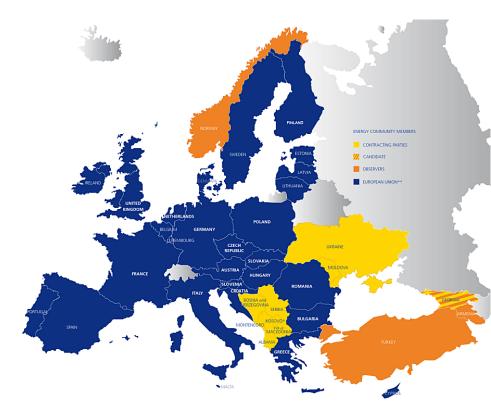
Péter Kaderják

Director Regional Centre for Energy Policy Research Corvinus University of Budapest

> ENTSO-G Workshop November 20, 2013. Brussels

- The PECI selection process and methodology
- Elements of the CBA and modelling assumption
- The Danube Region Gas Market Model
- Illustrative results and sensitivity analysis
- Model extension: the European Gas Market Model (EGMM)

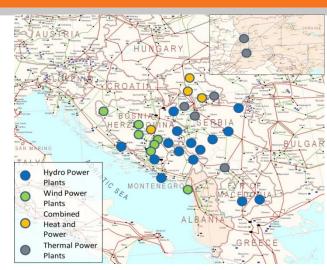
3


The Energy Community's PECI selection process

- July 2012: Energy Strategy of the Energy Community published
- Secretariat initiated work to identify Projects of Energy Community Interest (PECI)
- Project evaluation and ranking, including modelling based CBA: the consortium of KEMA, REKK and EIHP selected
- Process very similar to PCI

KEMA₹

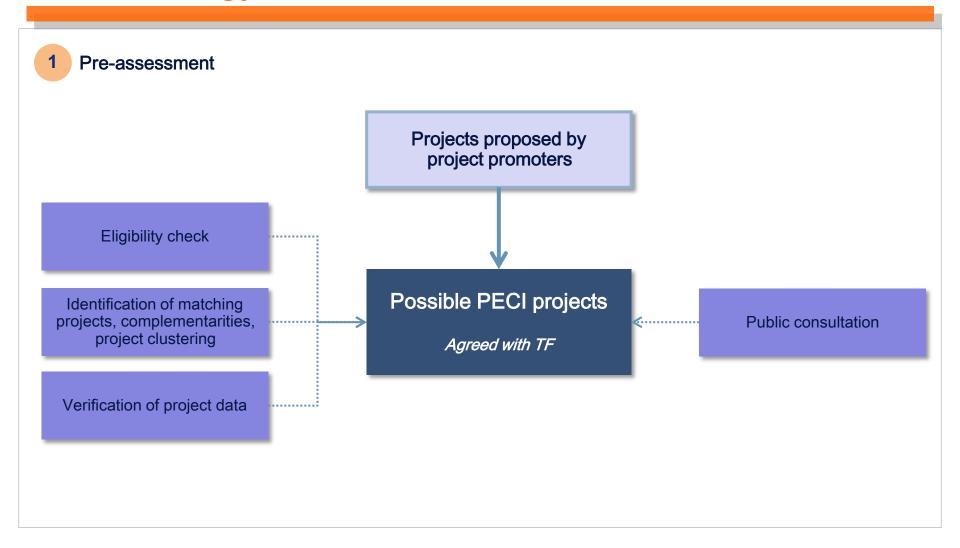
- 100 projects of €30 Bn promoted
- October 2013: Ministerial Council approved PECIs including 10 gas infra projects



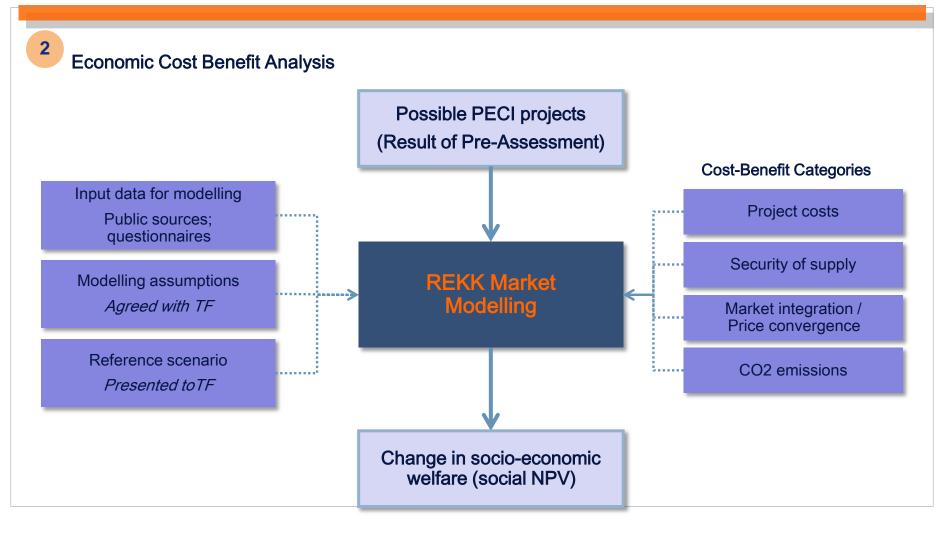
Promoted projects

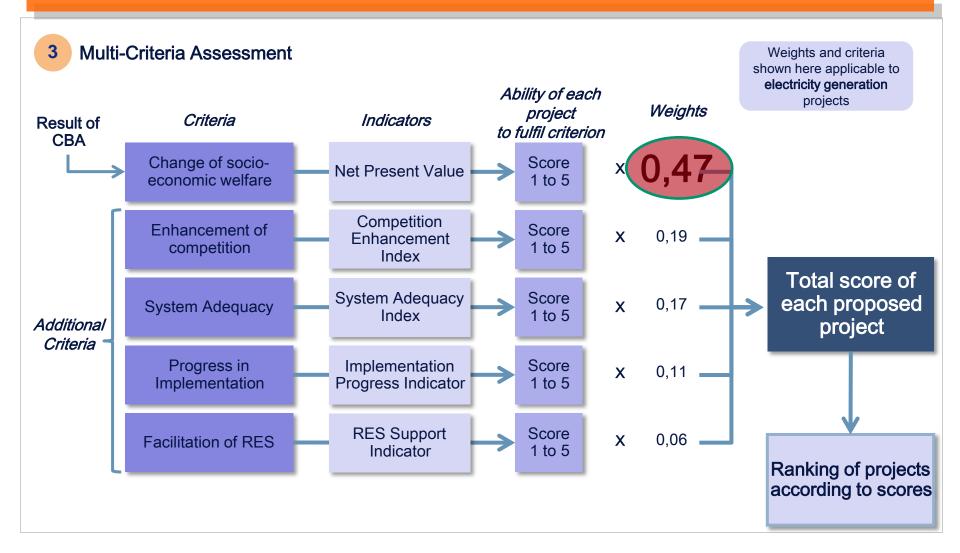
Electricity generation (43)

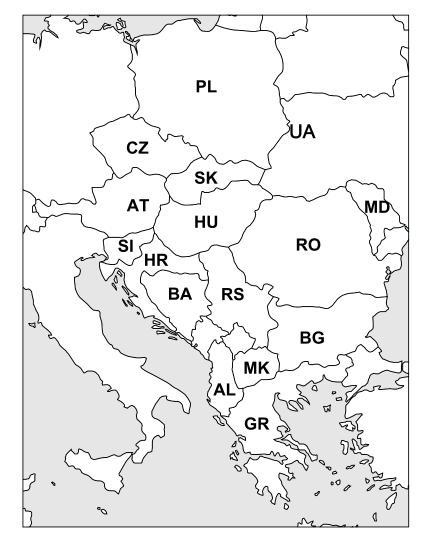
Electricity infrastructure (30)



Gas infrastructure (23 + 4 oil)

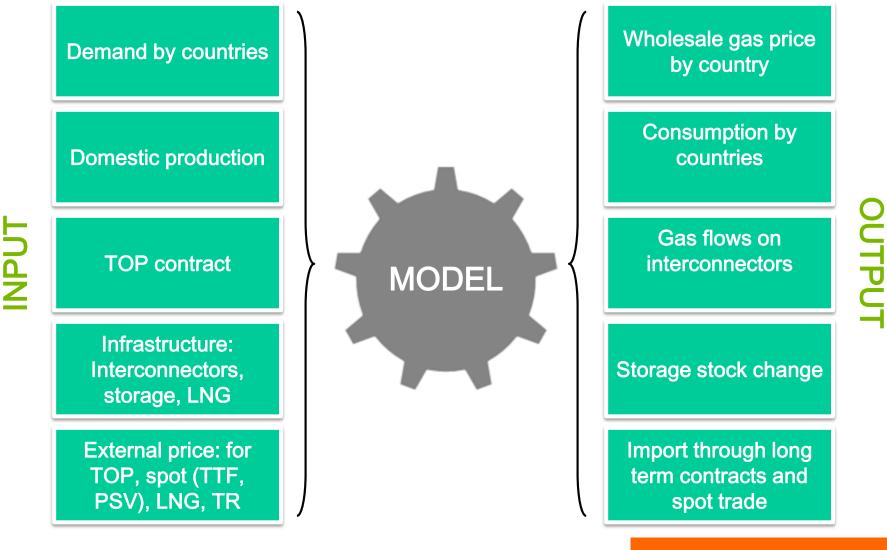

Applied Project Assessment Methodology – 1


Applied Project Assessment Methodology – 2


Applied Project Assessment Methodology - 3

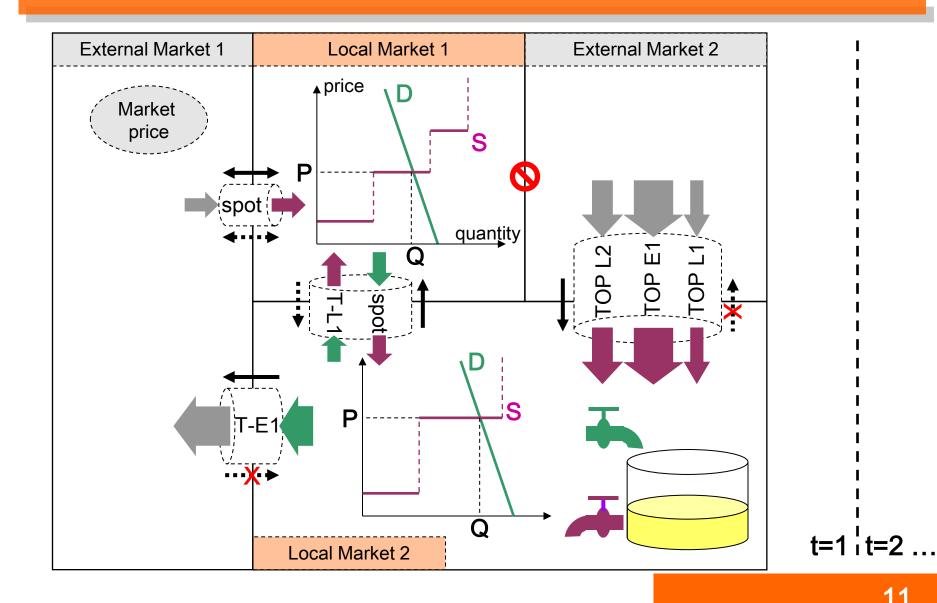
8

Danube Region Gas Market Model



- Geographical coverage of the model:
 - 16 countries -see map
- DRGMM:
 - Competitive market equilibrium prices by countries
 - Natural gas flows and congestions on interconnectors
- One year (12 months) are modelled
- Trade is based on long term contracts and spot trade within the DR and with exogenous countries (Russia, Germany, Italy, Turkey and Greek LNG)
- Physical constraints are interconnection capacities
- Trade constraints: TOP obligation
- Domestic production and storage facilities are included
- Transmission and storage fees are included (assessed by REKK)

One gas year – 12 months


Summary of modelling input parameters and data sources

Category	Data Unit	Source
Consumption	Annual Quantity (bcm) Monthly distribution (% of annual quantity)	Energy Community data, Eurostat, ENTSO-G
Production	Minimum and maximum production (mcm/day)	Energy Community data, ENTSO-G
Pipeline infrastructures	Daily maximum flow	GIE, ENTSO-G, Energy Community data
Storage infrastructures	Injection (mcm/day), withdrawal (mcm/day), working gas capacity (mcm)	GSE
LNG infrastructures	Capacity (mcm/day)	GLE
TOP contracts	Yearly minimum maximum quantity (mcm/year) Seasonal minimum and maximum quantity (mcm/day),	Gazprom, National Regulators Annual reports, Platts

Model scheme

11

Reference Scenario for Two Characteristic Years

	 Major changes compared to 2011: 						
	 Demand and production modified according to available 2015 forecasts 						
	New infrastructures added to the latest GIE infrastructure setup:						
	 New (bi-directional) lines: HU-SK, MV-RO, reverse-flow projects: HU-AT, RO-HU, BG-RO, PL-CZ, SI-AT, HR-SI 						
2015 compared to 2011	 South Stream project: TR-BG, BG-SB, SB-HU, HU-SI, SI-IT pipelines (10 bcm is shipped to Italy under a TOP regime with allowing backhaul up to 1,5 bcm) 						
	 Storage tariffs reflect the prices set by storage operators for 2013 						
	 Tariffs capped at 5,30 €/MWh, i.e. 105% of the EFS's price (5,05 €/MWh) 						
	 TOPs expiring between 2011 and 2015 (HU, BG, HR) renewed with a reduced rate of annual contracted capacity (80% of the former contract) 						

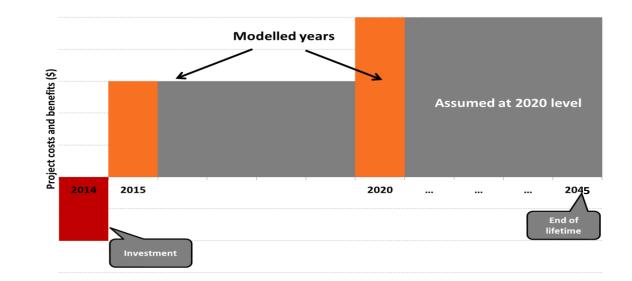
Demand and production modified according to available 2020 forecasts.
 Infrastructure added according to latest TYNDP excluding the analysed projects

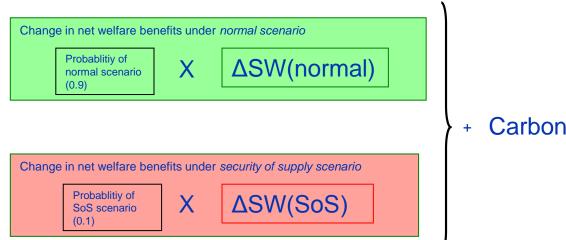
12

Welfare impact calculation for each project

Welfare calculation	 In calculating economic welfare, consumer surplus, producer surplus, storage operator profit, long term contract holders' profit and TSO auction revenues are used They are weighted equally The welfare of the whole Energy Community was measured – at the same time eligibility check for the impact of projects on at least two countries: Welfare is quantified without and with each of the projects Difference is used as an input for the CBA - ∆SW(normal)
SoS calculations	 Security of supply benefits of a project were simulated by first measuring economic welfare change due to the project in the context of a partial discontinuation of gas supply. Partial discontinuation means a 30% supply drop on the interconnectors from Russia/Ukraine in January to the region. Economic welfare change due to the realization of the proposed infrastructure was calculated as the difference between welfare under the partial discontinuation with and without this project ΔSW(SoS)

Total social welfare and NPV calculation




Total social welfare change calculations	 Then the probability of a supply cut will be used to weight the results under normal situation and situation with discontinued supply to calculate the overall welfare effect of the project in question 0,9*∆SW(normal)+0,1*∆SW(SoS) The CO2 emission of the change in natural gas consumption was calculated, and carbon costs are added to the benefits. For the CO2 price, the latest EU reference was used.
NPV calculations	 Project evaluation One by one; all enter the market by 2015 Uniform 30 years lifetime assumed Investment costs are born in the previous year. Rate of return: 5%

Source on CBA: FSR THINK Report (2013)

Projects' costs and benefits for NPV calculations

+ Carbon costs/savings =

Δ total SW

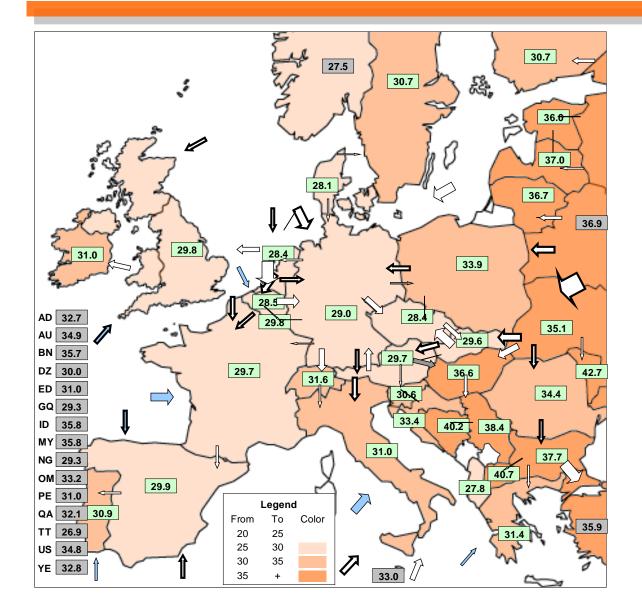
An illustration for analysis output

Project			2015			2020				CBA results		
Project ID	Project description	Investmen t cost	change	Welfare change	CO2 quota cost	Total welfare	Welfare change	U	CO2 quota cost		NPV	Score Scale 1
			(normal)	(SOS)	saving change	change	(normal)	(SOS)	saving change	change		(min) to 5 (max)
	Calculation Method	Input	Model	Model	Model	D*0,9+E*0 ,1+F				H*0,9+I*0, 1+J		Scaling
		million €	million €	million €	million €	million €	million €	million €	million €	million €	million €	
G0XX	Interconnector to a new market	16	69	68	-1	68	69	70	-2	67	1 022	4,2
G0XX	LNG	617	40	38	-1	39	89	185	-2	97	620	3,8
G0XX	Interconnector between existing markets	94	-1	-2	0	0	37	38	-4	33	271	3,1
G0XX	Storage	37	0	0	0	0	0	1	0	0	-37	2,7

Aggregate benefits can be broken down by countries/zones and market participants

Some comments on the final results

- Projects bringing gas to not yet gasified markets rank very high
- LNG projects perform very well.
- Storage projects have very limited effect on wholesale prices


Sensitivity analysis

- (1) South stream is part of the reference scenario network
- (2) Low demand scenario (5%↓ in 2015, 10%↓ in 2020)
- (3) High demand scenario (5% ↑ in 2015 and by 15% ↑ by 2020)

Project							
ID	Project Name						
G002	EAGLE LNG Terminal						
G008	Ionian Adriatic Pipeline (IAP)						
G022	Trans Adriatic Pipeline (TAP)						
G017							
G015	Interconnection Pipeline RS - ME						
G010 +	LNG Terminal in Croatia + Pipeline Zlobin-Bosiljevo-Sisak-						
G011	Kozarac-Slobodnica						
	Interconnection Pipeline BiH - HR (Lička Jesenica-Tržac-						
G007	Bosanska Krupa)						
	Interconnection Pipeline BiH - HR (Slobodnica-Bosanski						
G006	Brod-Zenica)						
G005	Interconnection Pipeline upgrade Batajnica (RS) - Zvornik (BiH)						
0005	Interconnection Pipeline BiH - HR (Ploce - Mostar -						
G003	Sarajevo/Zagvozd - Posušje/Travnik)						
G005 G021	Modernization of Urengoy-Pomary-Uzhgorod Pipeline						
G014	Interconnection Pipeline RS - FYR of MK						
G023	Gas interconnector RS-HR						
G018	Underground Gas Storage Banatski Dvor						
G019	Underground Gas Storage Banatski Itebej						
G016	Interconnection Pipeline RO - RS						
G004	Interconnection Pipeline RS - BiH - HR						
	Interconnection Pipeline HR - RS (Slobodnica-Sotin-						
G009	Bačko Novo Selo)						
G012	Cazaclia Underground Gas Storage						
G013	Interconnection Pipeline RS - BG						
G020	LNG Terminal Ukraine						

European Gas Market Model – ready to use

- Outside markets: NO, RU, TR, LNG (grey box)
- Endogenous markets (green)
- Arrows (modelled gas flow)
- Bold: much larger flow
- Grey: congested
 interconnector
- Blue: LNG)
- Global LNG markets are represented by Japanese LNG prices

- Whole Europe is modelled external markets: Japan, Norway, Russia
- Global LNG market is represented by Japanese LNG prices adjusted by transportation costs
- LNG constraints are taken into account (gasification and regasification capacity)
- Transmission tariffs are actual 2013 tariffs both for pipeline and for LNG terminals

THANK YOU FOR YOUR ATTENTION!

Development and Application of a Methodology to Identify Projects of Energy Community Interest

> DNV KEMA, REKK, EIHP Ner 2013

Energy Community
