

Cost-Benefit Analysis methodology

Test Case on the interim Economic Analysis

Adela Comanita & Adam Balogh Advisers, System Development

8th TYNDP/CBA Workshop – Brussels - 20 November2013

Role of indicators in the CBA methodology

The algorithm for the identification of the available volumes to be distributed, as an alternative solution

- > Until the applicability of the targeted approach is fully ensured, the interim Economic Analysis to be used, is based on an Algorithm.
- > The Algorithm is built on the following principles:
 - Application of the indicators in the country where investment is built
 - Application of the indicators in the countries within the area of analysis
 - Identification of the most impacted countries considering the availability/need for the incremental volumes of gas released by a new infrastructure
 - Distribution of volumes between the most impacted countries based on the results of the indicators (as further input for monetization)

UGS/Pipeline – Case study in steps

I. Assumptions and Identification of the Projects – Identification of the infrastructure scenario

II. Identification of the Area of Analysis

III. Input data for the Quantitative Analysis

IV. The Quantitative Analysis

Step 1. Indicators in country A

Step 2. Identification of the surplus volumes to be distributed from country A to impacted countries

Step 4.Identification of countries "in need " for additional volumes of gas

Step 5. Distribution of the daily surplus based on Pro-Rata Allocation

Step 6. Calculation of the annual distributed surplus volumes

Step 7. Recalculation of the indicators after distribution of volumes

V. Economic analysis

Calculation of saved costs in impacted countries

Economic cash flow and economic performance indicators

VI. Qualitative analysis

I. Assumptions and Identification of the Projects – Identification of the infrastructure scenario

Existing infrastructure capacity	UGS	Pipeline
Status	FID	FID
Construction Period	4 years	2 years
CAPEX	600 mEUR	80mEUR
OPEX	3 % of	CAPEX
Commissioning Year (first full year of operation)	2017	2015
Depreciation period	40 years	s - linear
Pipeline Project		х
Entry capacity to Country A		100 GWh/day
Exit capacity		N/A
UGS	x	
UGS injection capacity	110 GWh/day	
UGS withdraw capacity	110 GWh/day	

The scenario *"without the project"* is considered by subtracting the project data from the cluster *"Low infrastructure"* which in this case is considered as scenario *"with the project"*

Low Infrastructure

II. Identification of the Area of Analysis

Based on the definition of the Area of Analysis in the Regulation

- > The country where the project is built
- > The neighbouring (directly connected) countries
- > All others Member States significantly impacted by the project can only be defined based on the results the Quantitative Analysis

Area of analysis

Area of analysis

III. Input data for the Quantitative Analysis

The input data as a key to a PS-CBA...

- > Building the input data for the examined zones (countries) as provided in PS-CBA
- > The correct identification of the input data is of crucial importance for the PS-CBA
- > All the input data shall be considered from the ESW-CBA
- > Data tables are created based on the above presented analyzed countries examples follow

The input data for the analysis based on the identified area...

GWh/d			Ye	ar
Country	Input data	No	2013	2017
	National Production		8	40
	LNG		0	0
	INJ (w/o)		40	40
	WITH (w/o)		40	40
	WITH max (w/o)		40	40
	INJ (w)		40	150
Α	WITH (w)		40	150
	WITH max (w)		40	150
	Dsa		50	75
	Dwa		93	147
-	Dh		178	224
	IP	5	920	920
	EX		680	680
	National Production		0	0
Ī	LNG		0	0
Ī	INJ		24	24
	WITH		24	24
	WITH max (w)		24	24
В	Dsa		57	77
-	Dwa		106	140
	Dh		140	140
	IP	2	190	190
	EX		70	70

	National Production		0	0
	LNG		110	110
	INJ		0	0
	WITH		0	0
С	WITH max		0	0
C	Dsa		120	150
	Dwa		160	210
	Dh		240	310
	IP	2	190	190
	EX		100	100

The input data for the analysis based on the identified area...

		2013	2015
Country	A Zone 1		
	NP - Annua	550,0	500,0
	NP - Daily	1,5	1,4
	Dh - Design	2800,0	2850,0
	Dwa	1350,0	1350,0
	Dsa	500,0	500,0
	UGS	48500,0	48500,0
	UGS/day	132,9	132,9
	Injection	600,0	600,0
	Withdrawa	900,0	900,0
	LNG	400,0	400,0
	# of lps w/o	4,0	4,0
	# of lps w	4,0	5,0
	Border B		
EN	IP1	600,0	600,0
EN	IP2	250,0	250,0
EN	IP3	0,0	100,0
EX	IP4	0,0	0,0
	Border C		
		N/A	N/A
	Border D		
EN	IP5	800,0	800,0
	Border E		
EX	IP6	700,0	700,0
	Border F		
		N/A	N/A
	Border Zone	∋ 1-2	
EN	IP7	250,0	250,0
EX	IP8	1000,0	1000,0
	Border Zone	∋ 2-G	
EN	IP8	200,0	200,0
EX	IP9	800,0	800,0
	Direct Supp	ly 1	
EN	IP10	600,0	600,0
	Direct Supp	ly LNG	
LNG	LNG1	400,0	400,0
LNG	LNG2	0,0	0,0
SEM EN w/o		2700,0	2700,0
SUM EN w		2700,0	2800,0
SUM EX		1700,0	1700,0
SUM LNG		400,0	400,0

	tood
EII	isoy
\mathcal{O}	

Cour	ntry G		
	NP - Annua	0	0
	NP- Daily	-	-
	Dh - Design	2050	2150
	Dwa	1450	1550
	Dsa	950	1050
	UGS	43600	43600
	UGS/day	119,5	119,5
	Injection	250	250
	Withdrawa	300	300
	LNG	1425	1425
	# of IPs	3	3
	Border A Zo		
EN	IP9	200	200
EX	IP8	400	400
	Border Othe	er	
EN	IP41	80	80
EX	IP42	350	350
	Direct Supp		
EN	IP43	600	600
	Direct Supp	•	
EN	LNG1	500	500
EN	LNG2	300	300
EN	LNG3	400	400
EN	LNG4	400	400
EN	LNG5	100	100
EN	LNG6	200	200
SUM EN		880	880
SUM EX		750	750
SUM LNG		1425	1425

IV. Quantitative Analysis – The algorithm

1) Indicators in Country A – with and without the project

Where:

EX: Exit capacity after application of the lesser rule (to other EU and third countries) (GWh/day)

NP : Daily national production deliverability (GWh/day)

N: Number of entry IPs

IMP : Daily capacity of entry IP (from other EU and third countries) (GWh/day)

LNG : Daily send-out of LNG Terminal (GWh/day)

On the two sides of the border concerned

INJ: min(Injection capacity ;Working Gas Volume /183) (GWh/day)
WITH: The minimum between the daily Withdrawal capacity and daily average Working Gas Volume (GWh/day)
WITH_{max}: Withdrawal capacity (GWh/day)
Dh: High daily demand under Design Case (GWh/day)
Dsa: average summer demand (GWh/day)
Dwa: average winter demand (GWh/day)

As the steps for calculating the indicators (N-1; bi-directionality...) are the same, only the above three indicators which can be applied for the algorithm have been considered as example

The result of indicators in the first full year of operation with and w/o the project in Country A

GWh/d	Year	
Country	Input data No 2013 2017	
	National Production 8 40 LNG 0 0	
	INJ (w/o) 40 40 WITH (w/o) 40 40 WITH max (w/o) 40 40 INJ (w/o) 40 40	
A	INJ (w) 40 150 WITH (w) 40 150 WITH max (w) 40 150 Dsa 50 75	
	Dwa 93 147 Dh 178 224 IP 5 920 920	
	EX 680 680	
	Input data	2017
Ind	icators (w/o)	
	SACB	8,81
	WACB	4,55
	DCB	2,64
Ind	icators (w1)	
	SACB	7,35
	WACP	4,63
	DCB	3,04
	SACB ∆= (w-w/o)	-1,47
	WACP $\Delta = (w-w/o)$	0,07
	DCB ∆= (w-w/o)	0,39

As reflected within the example, only the SACB does not bring improvement for the indicator, therefore cannot be considered for defining the volumes to be distributed

The result of indicators in the first full year of operation with and w/o the project in Country A

5	ACE	$B = \frac{Min(EX)}{EX}$: NP +	<u>N - 1</u> * IMP Dsa	+LNG - INJ - Dsa)
И	VAC			Dwa	
D	OCB	= Min(EX	; $NP + \frac{N}{l}$	<u>-1</u> * IMP Dh	+ LNG + WITH _{max} - Dh)
Indic.	Yr.		Value		
		w/o	w	Δ	
SACB	З.	3,3198	3,4000	0,0802	
WACB	З.	0,9936	1,1529	0,1593	
DCB	З.	0,1671	0,2426	0,0754	

		2013	2014	2015	2016	2017	2018
Country	A Zone 1						
	NP - Annua	550,0	0,0	500,0	8000,0	16000,0	23000,0
	NP - Daily	1,5	0,0	1,4	21,9	43,8	63,0
	Dh - Design	2800,0	2850,0	2850,0	2900,0	2900,0	2950,0
	Dwa	1350,0	1350,0	1350,0	1400,0	1400,0	1400,0
	Dsa	500,0	500,0	500,0	500,0	500,0	500,0
	UGS	48500,0	48500,0	48500,0	48500,0	48500,0	48500,0
	UGS/day	132,9	132,9	132,9	132,9	132,9	132,9
	Injection	600,0	600,0	600,0	600,0	600,0	600,0
	Withdrawa	900,0	900,0	900,0	900,0	900,0	900,0
	LNG	400,0	400,0	400,0	900,0	900,0	900,0
	# of lps w/o	4,0	4,0	4,0	4,0	4,0	4,0
	# of lps w	4,0	4,0	5,0	5,0	5,0	5,0
	Border B						
EN	IP1	600,0	600,0	600,0	600,0	600,0	600,0
EN	IP2	250.0	250.0	250.0	250.0	250.0	250.0
EN	IP3	0,0	0,0	100,0	100,0	100,0	100,0
EX	IP4	0,0	0,0	0,0	0,0	200,0	200,0
	Border C						
		N/A	N/A	N/A	N/A	N/A	N/A
	Border D						
EN	IP5	800,0	800,0	800,0	800,0	800,0	800,0
	Border E						
EX	IP6	700,0	700,0	700,0	700,0	700,0	700,0
	Border F						
		N/A	N/A	N/A	N/A	N/A	N/A
	Border Zone	1-2					
EN	IP7	250,0	250,0	250,0	250,0	250,0	250,0
EX	IP8	1000,0	1000,0	1000,0	1000,0	1000,0	1000,0
	Border Zone						
EN	IP8	200,0	200,0	200,0	200,0	200,0	200,0
EX	IP9	800,0	800,0	800,0	800,0	800,0	800,0
	Direct Supp						
EN	IP10	600,0	600,0	600,0	600,0	600,0	600,0
	Direct Supp						
LNG	LNG1	400,0	400,0	400,0	400,0	400,0	400,0
LNG	LNG2	0,0	0,0	0,0	500,0	500,0	500,0
SEM EN w/o		2700,0	2700,0	2700,0	2700,0	2700,0	2700,0
SUM EN w		2700,0	2700,0	2800,0	2800,0	2800,0	2800,0
SUM EX		1700,0	1700,0	1700,0	1700,0	1900,0	1900,0
SUM LNG		400,0	400,0	400,0	900,0	900,0	900,0

In the third year (2015), the project is improving the result of the indicator in Country A in each season, therefore it can be considered for defining the volumes to be distributed

IV Quantitative Analysis – The algorithm

2) Indicators within the Area of Analysis – without the project – identifying potential NEED for additional volumes of gas

- > The indicators have to be calculated for all potentially impacted countries within the Area of Analysis. (scenario without the project)
- > The identification of the countries in NEED is based on the value of these indicators.
- In case the value of the indicator in these countries is lower than the value of the indicator in Country A, a NEED is identified.
- > The countries in NEED are considered as the Significantly Impacted Countries by the project.

The result of indicators in the countries within the Area of Analysis

SURPLUS

A higher value in Country A, than w/o the project

NEED

A lower value in Country B and Country C, than in Country A, where the project is built

Input data	2017	
ndiesteur (/e)		Indicators (w/o) B
Indicators (w/o)		SACB
SACB	-	WACB
WACB		DCB
	0 6 4	
DCB	2,64	
	2,64	
	-	
Indicators (w1)	7,35	
Indicators (w1) SACB WACP	7,35 4,63	e.g.: 1.62 x 0.02
Indicators (w1) SACB WACP DCB	7,35 4,63 3.04	e.g.: 4.63 > -0,02 Indicators (w/o) C SACB
Indicators (w1) SACB WACP	7,35 4,63 3.04 -1,47	e.g.: 4.63 > -0,02 MACB

The values of the SURPLUS and the NEED vary from one year to another one.

Each indicator for each season (summer, winter, design case) can reflect different situations

The result of indicators in the countries within the Area of Analysis

SURPLUS

A higher value in Country A, than w/o the project A lower value in Country G, than in Country A, where the project is built Value Alloc. Test Value Indic. Yr. Need w/o W Δ w/o Δ W NEED 0,7895 2,5306 SACB 3,3198 0,0802 Alloc Possible З. 3,4000 & NEED 0,7500 2,5670 WACB 0,9936 1,1529 0.1593 **Alloc Possible** 0,6877 2,7123 NEED 3. 0,6110 2,7890 NEED DCB 0,2426 0,0754 Alloc Possible 0,1671 3 NEED 0.6110 3,1890 0,5410 3,2590 NEED NEED 0,5172 0,4765 0,4927 NEED 0,4999 e.g.: NEED 0.4516 0.7013 3.4 > 0,6877 NEED 0,7627 0,4516 0,4062 0,9509 NEED 0.3636 0.9936 NEED NEED 0.1276 0.0604 0,1008 0.0659 NEED NEED 0,0752 0,1674 NEED 0,0508 0,3499 0,0274 0,3808 NEED NEED 0.0051 0,3858

The values of the SURPLUS and the NEED vary from one year to another one.

Each indicator for each season (summer, winter, design case) can reflect different situations

NEED

IV. Quantitative Analysis – The algorithm

3) Identifying the daily/annual surplus volumes to be allocated*

- > Based on the improvement of the indicators in Country A, volumes can be calculated, and surplus volumes can be distributed to countries in NEED.
- > The increase of the value of each indicator in Country A, reflects potential surplus volumes, which can be allocated to countries in NEED.
- > When calculating the surplus volumes, the value of the indicator in Country A with the project should not become lower than the value of the same indicator w/o the project. The difference between the two indicator results (with and w/o the project), defines the surplus volume, as shown in the examples on the following slides.

> Annual allocated volumes are to be generated based on the following formula, deriving from the daily volumes:

$$V_y = (CB_s * 183) + CB_w * (182 - 14) + (CB_h * 14)$$

Where:

 CB_s is the allocated surplus under the Average Summer day

 CB_W is the allocated surplus under the Average Winter day

 CB_h is the allocated surplus under the High Daily Demand day

Identifying the surplus volumes to be allocated

per year (GWh/y)

18

Identifying the surplus volumes to be allocated

Indic.	Yr.		Value		Alloc. Test	Avail. Volume/day (GWh	
		w/o	w	Δ			
SACB	З.	3,3198	3,4000	0,0802	Alloc Possible	100,0000	3,3198
WACB	З.	0,9936	1,1529	0,1593	Alloc Possible	100,0000	0,9936
DCB	З.	0,1671	0,2426	0,0754	Alloc Possible	100,0000	0,167149

 $V_y = (CB_s * 183) + CB_w * (182 - 14) + (CB_h * 14)$

 $36.500_{year 3} = (100_{CBs} * 182) + [100_{CBw} * (183 - 14)] + (100_{CBh} * 14)$

Technically done, with an Excel function (Goal Seek).

Generate a value for the daily volume, that brings the value of the indicator (with the project) to the initial value (w/o the project)

36.500 GWh distributed volumes for the third year

As only one country is impacted, all the volumes go to country G, thus no distribution pattern had to be considered (no difference)

Output of the quantitative analysis

4) Recalculation of indicators after distribution

		2017
Country	Input data	2017
	Indicators after distribution	
Α	SACB	7,35
	WACP	4,55
	DCB	2,64
	Indicators after distribution	
В	SACB	n.a
	WACB	-0,16
	DCB	0,23
	Indicators (w after distribution)	
С	SACB	n.a
	WACB	0,22
	DCB	-0,16

Indicators	Value	of Indic	cator	Available volumes/day	Distribution of volumes/year	Value of the indicator after distribution			
	w/o	W	7	GWh/d	GWh/y				
Country A									
SACB	8,81	7,35	-1,46	na	na	n.a			
WACB	∕∕∕4,55	→4,55 4,63		110,05	18589,13	4,55			
DCB	2,64	2,64 3,04		109,84	1537,76	2,64			
Country B	2,01 0,01								
SACB	-0,08		na	n.a	n.a	n.a			
WACB	-0,58		0,42	58,17	9830,69	-0,16			
DCB	-0,15		0,38	53,13	743,75	0,23			
Country C			0,00						
SACB	0,37 n.a		n.a	n.a	n.a				
WACB	-0,02		0,25	51,88	8767,44	0,22			
DCB	-0,34		0,18	56,71	794,01				

The value of indicators after distribution, in country A remains as initially (w/o); for country B and C the value of indicators after distribution has been improved

V. Economic Analysis

1) Input data for the Economic Analysis

- > The purpose of the Economic Analysis is to calculate economic performance indicators to reflect the societal value of a project in monetary terms.
- > This reflection is done by calculating different "layers" of saved costs for each impacted country, as described in the PS-CBA document.
- > The calculated potential saved costs:
 - from CO2 emissions
 - of fuel after switching to gas within the electricity mix
 - swing value as difference of gas price between two periods: injection and withdrawal – UGS specific
 - from avoiding disruption no cost of disruption/unit of energy available

V. Economic Analysis

1) Input data for the Economic Analysis – saved cost approach

						Ye	ar				
Price	2013	2014	2015	2016	2017	2018	2019	2020	2021	 2035	2036
CO2 price/tone - EUR	3,7	6,3	9,0	11,6	14,3	16,9	19,6	22,2	23,0	33,3	33,3
Natural Gas - EUR/GWh	25.275,2	26.539,0	27.802,7	28.055,5	28.308,2	28.561,0	28.813,7	29.066,5	29.268,7	31.594,0	31.594,0
Oil - EUR/GWh	43.573 <i>,</i> 0	47.058,8	50.544,7	50.849,7	51.154,7	51.459,7	51.764,7	52.069,7	52.278,9	54.466,2	54.466,2
Steam Coal - EUR/Gwh	11.346,6	10.802,9	10.259,2	10.325,4	10.391,6	10.457 <i>,</i> 8	10.524,0	10.590,2	10.609,1	10.873,8	10.873,8
Swing value for the UGS (EL					1.520,0	1.520,0	1.520,0	1.520,0	1.520,0	1.520,0	1.520,0
Disruption cost (EUR/GWh)	500.000,0	500.000,0	500.000,0	500.000,0	500.000,0	500.000,0	500.000,0	500.000,0	500.000,0	500.000,0	500.000,0
Risk of Occurance	5%	5%	5%	5%	5%	5%					

2) Substitution of Fuels and the Saved Cost "layers" for Country B

	2017							
Input data		2017						
Allocated natural gas for the country per year (GWh)	10.574,44							
Possibly Substituted - 66,6% of the production								
Coal	5.333,3							
Oil	13.333,3							
Lignite	2.666,7							
To be substitued - in the order of pollution								
Coal	5.333,3							
Oil	5.241,1							
Lingnite								
New fuel mix, including gas for substitution (GWh) to	generate given electr	icity amount						
Coal	3.809,5							
Oil	18.448,6							
Lignite	5.714,3							
Natural Gas	10.574,4	ок						
Emission of the new fuel mix (t) after substitution								
Coal	100.105,90							
Oil	396.645,45							
Lignite	160.317,59							
Natural Gas	164.785,23							
Cummulated new emission	821.854,2							
Saved CO2 emission (t)	176.281,6							
Saved CO2 emission cost (mEUR/yr)	2,5							
Cost of fuels before substitution (mEUR)	1.457							
Cost of fuels after substitution (mEUR)	1.342							
Saved costs of fuels (mEUR)	115							
Saved costs of swing (mEUR)	16							
Total saved costs country C (mEUR)	133,6							

The total saved costs/year will be considered as input data for the economic cash flow

2) Substitution of Fuels and the Saved Cost "layers" for Country C

Input data/year		2017					
Allocated natural gas for the country per year (GWh)	9.561,45						
Possibly Substituted - 66,6% of the production							
Coal	6.666,7						
Oil	16.666,7						
Lignite	3.333,33						
To be substitued - in the order of pollution							
Coal	6.666,67						
Oil	2.894,8						
Lignite							
New fuel mix, including gas for substitution (GWh) to	generate giver	electricity amount					
Coal	4.761,9						
Oil	27.631,5						
Lignite	7.142,9						
Natural Gas	9.561,45	ОК					
Emission of the new fuel mix (t) after substitution							
Coal	125.132,38						
Oil	594.078,21						
Lignite	200.396,99						
Natural Gas	148.999,36						
Cummulated new emission	1.068.606,9						
Saved CO2 emission (t)	179.062,7						
Saved CO2 emission cost (mEUR/yr)	2,6						
Cost of fuels before substitution mEUR	1.821						
Cost of fuels after substitutionEUR	1.808						
Saved costs of fuels (mEUR)	13						
Saved costs of swing	14,53						
Total saved costs country C (mEUR)	30,49						

The total saved costs/year will be considered as input data for the economic cash flow

2) Substitution of Fuels and the Saved Cost "layers" for Country G

Pipeline Example Continued

2) Substitution of Fuels and the Saved Cost "layers" for Country G

- > It is of crucial importance to acquire the cost of disruption /unit of energy data
- > For the sake of example (without refference to any source), 500.000 EUR/GWh has been considered.
- > Cost of disruption /unit of energy and chance of occurance has not been set within the methodology – external data needed!

	2015
Disruption Scenario	14-days Full Supply 1 to A
Unsupplied Gas (GWh/ 14days full disrupt)	8.400,00
Substitutable from new infrastructure (during disruption)	14x100GWh/d=1.400 GWh
Avoided cost if occurs EUR	700.000.000,00
Chance of occurance	5%
Avoided cost EUR/ year	35.000.000,00

3) The Economic Cash Flow and aggregating the results

•																
Input data		2013	2014	2015	2016	2017	2018	2019	20	2030	2031	2032	2033	2034	2035	203
		0	1	2	3	4	5	6		17	18	19	20	21	22	2
Investment cost	mEUR	150	150	150	150											
O&M costs	mEUR					18	18	18		18	18	18	18	18	18	1
Replacement costs	mEUR															
Residual value	mEUR		1													-30
Total costs		150	150	150	150	18	18	18		18	18	18	18	18	18	-282
Saved costs country B						133,56	135,01	139,10		136,88	136,35	135,83	135,30	134,77	134,24	134,2
Saved costs country C						30,49	38,24	29,41		19,52	18,82	18,12	17,43	16,73	16,03	16,0
Total saved costs						164,05	173,25	168,51		156,40	155,17	153,95	152,72	151,50	150,27	150,2
Net benefits		-150,00	-150,00	-150,00	-150,00	146,05	155,25	150,51		138,40	137,17	135,95	134,72	133,50	132,27	432,2
SDR	4,50%															
Output data																
ENPV (m EUR)	€ 1.120,72															
ERR	18%															
B/C ratio	3,31															
NPV costs	€ 630,16															
NPV benefits	€2.087,96															

The project has a positive societal value : ENPV>0, ERR>SDR, B/C>1

Note: For simplicity, this table does not reflect the whole time horizon (for the applicability see also see Excel Case study)

3) The Economic Cash Flow and aggregating the results

Results presented throughout the steps on the previous slides

Saved CO2 emission cost (EUR/yr)							5,114,046.43		357,807.46		5,242,336.02		6,532,139.26
Saved fuel cost (EUR/yr)							579,603,395.90		-18,626,854.69		-85,987,130.67		-175,192,240.04
Avoided cost EUR/ year							35,000,000.00		35,000,000.00		35,000,000.00		35,000,000.00
							Monetary Analysis						
CAPEX (mEUR)			€ 40,000,000	€ 4	40,000,000								
OPEX (mEUR)		ļ				€	2,400,000	€	2,400,000	€	2,400,000	€	2,400,000
Residual Value (EUR)												€	-70,000,000
Total Costs (EUR/yr)	£	-	€ 40,000,000	÷ e	40,000,000	€	2,400,000	€	2,400,000	€	2,400,000	•	-67,600,000
Saved Costs Country G				Τ		•	619,717,442	•	16,730,953	€	-45,744,795	€	-133,660,101
Saved Costs Country no other country in this example	e												
Total Saved Costs (EUR/yr)	€	-	€ -	3	-	€	619,717,442	e	16,730,953	€	-45,744,795	€	-133,660,101
Net Benefits (EUR/yr)	•	-	€ -40,000,000	€ -	40,000,000	•	617,317,442	•	14,330,953	€	-48,144,795	€	-66,060,101
SDR		4.500%	4.500%		4.500%		4.500%		4.500%		4.500%		4.500%
Discounted Net Benefits	•	-	€ -38,277,512	€ -	36,629,198	€	540,953,178	€	12,017,383	€	-38,633,841	€	-50,727,270
ENPV	€	388,702,741											
ERR		231%											
EB/C ratio		14.4											
NPV costs	€	29,038,500											
NPV benefits	€	417,741,240											
4													

Economic Performance Infdicator results not completely meaningful without reflecting the whole time horizon of 20 years of opretaion for the analysis

VI. Qualitative Analysis for UGS

Conclusions

- > The UGS project built in country A has impacted countries B and C as follows:
 - It has created a new source of supply for country B and enhanced security of supply, considering that country B has access to only two sources and it has not other local facilities as National production or LNG
 - Due to the project built in country A, country C has access to a new source and the security of supply is increased due to the fact that this country has access to only one source.
 - Both countries has increased the sustainability, considering the saved costs CO2 emissions
 - The security of supply considering the cost perspective, is enhanced due to the swing value of the UGS
 - By increasing SoS for both countries, the market integration of these countries is increased and also the competition, considering the new sources of supply and the available volumes to cover the winter and peak demand.

The quantitative and monetary analysis have proved the societal value of the project, all the general criteria have been proved and also the specific criteria (SoS, sustainability, market integration, competition)

Thank You for Your Attention

Adela Comanita and Adam Balogh Advisers, System Development

ENTSOG -- European Network of Transmission System Operators for Gas Avenue de Cortenbergh 100, B-1000 Brussels

EML: <u>Adela.Comanita@entsog.eu and Adam.Balogh@entsog.eu</u> WWW: <u>www.entsog.eu</u>