

ENTSOG Summer Supply Outlook 2016

Executive Summary

As part of its obligation under Art.8(3)(f) of Regulation (EC) 715/2009, ENTSOG has undertaken an assessment of the European gas network to analyse whether gas infrastructures enable to meet both demand and injection needs during Summer 2016. The conclusions are:

The European gas network is sufficiently robust in most parts of Europe to enable:

- > Planned maintenance in order to ensure infrastructure reliability on the long term
- > At least 90% stock level in preparation of the upcoming Winter
- > Some flexibility in network users' supply strategy
- > Supply to Ukraine with volumes of gas comparable to last summer

The report also highlights:

> Due to the high storage level at the end of the winter compared to the last year, the supply flexibility is expected to be on a higher level.

The actual supply mix and storage level on 30 September 2016 will depend on market behaviour and global factors.

Introduction

This edition builds on previous Summer Supply Outlooks as well as on the TYNDP 2015. The report aims to assess the ability of the European gas network to provide sufficient flexibility to shippers during their storage injection season.

The summer months provide shippers the opportunity to refill storage in anticipation of the winter months ahead. The level of injection targeted by shippers varies from one country to the other and from time to time due to climatic, price and legal parameters.

Modelling has been used to confirm the ability of the European gas network to provide flexibility of injection under different scenarios around a Reference Case targeting 90 percent storage level by 30 September 2016.

These additional scenarios cover alternative injection targets.

Like the previous edition and in order to take into account the latest development since the beginning of the Summer, the modelling takes as a starting point the actual storage level on 1 April 2016.

Additional linearization curves have been provided by GSE Members. Their use in the model enables a better consideration of the reduction of injection capacity when a storage reaches a high stock level.

Assumptions and results of the modelling

The modelling tool for the Summer Supply Outlook is the same as the one used in the TYNDP and the Winter Supply Outlook. It is mostly handled at country level and takes into account the existing gas infrastructure¹ and the infrastructure planned to be commissioned during the upcoming summer (see Annex A for details).

The Summer Supply Outlook 2016 considers seasonal specificities and short term trends. In any case actual injection and supply mix will result from shippers' decision.

> Reference Case

Supply under the Reference Case has been defined essentially based on the actual data of the last 3 Summers.

The overall "Summer injection" is defined as the quantity of gas necessary to reach an aggregated 90% stock level on 30 September 2016 starting from actual stock level on 1 April 2016 (Source: GSE AGSI platform).

The repartition of injection and supply along the summer months result from the modelling and the following assumptions (further detailed in Annex A and B):

The monthly gas demand forecast by TSOs

¹ Technical capacities are updated by TSOs. For the OPAL pipeline a partial availability taking into account the current exemption is considered.

- Exports towards Ukraine, Kaliningrad and Turkey²
- The monthly national gas production forecast by TSOs
- The overall Summer injection as defined above

The flexibility given to the model for the definition of the supply patterns derives from the supply mix of the last 3 Summers (See Annex A-Methodology).

Based on these assumptions, modelling has been used in order to check if any physical congestion or overdependence on an import source may limit the injection.

The Summer Supply Outlook takes into account the actual storage inventory level per country as of 1 April 2016³ as initial situation. As shown in the map below the storage inventory levels differ from country to country.

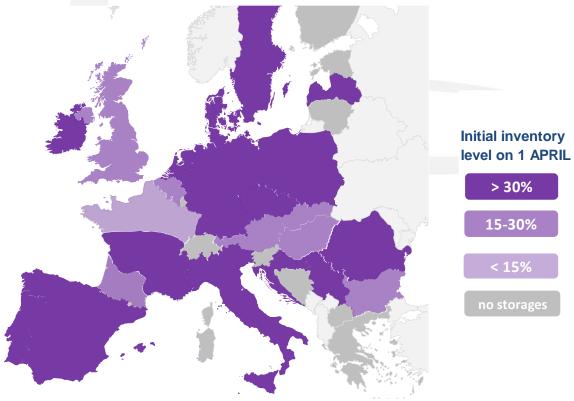


Figure 1: Actual storage inventory levels on 1 April 2016

In terms of absolute volumes in gas storages, the largest volumes are in Germany, Italy and the Netherlands.

The simulations show that a 90% stock level may be achieved by 30 September 2016 in all the balancing zones.

² The exports for Ukraine, Kaliningrad and Turkey were assumed to be on the Summer 2015 level.

³ The initial storage level on 1 April 2016 for each country is based on the information on the AGSI platform and SSO websites captured on 1 April 2016. For some countries, such as Italy and Hungary, this initial level includes strategic stocks.

Figure 2 shows the evolution of the stock level per country as a result of the model.

	01/04/2016 *	01/05/2016	01/06/2016	01/07/2016	01/08/2016	01/09/2016	30/09/2016
AT	22%	22%	31%	50%	70%	90%	90%
BE	18%	18%	30%	42%	61%	78%	90%
BG	27%	40%	54%	67%	79%	85%	90%
HR	44%	44%	53%	61%	70%	81%	90%
CZd	88%	88%	88%	88%	89%	90%	90%
CZ	24%	24%	35%	49%	64%	79%	90%
DK	39%	39%	49%	59%	70%	80%	90%
FRn	13%	13%	28%	42%	56%	76%	90%
FRs	35%	35%	42%	54%	67%	81%	90%
FRt	25%	27%	38%	51%	64%	80%	90%
DE	48%	48%	55%	65%	75%	86%	90%
HU	17%	26%	39%	52%	64%	77%	90%
IE	35%	35%	40%	51%	67%	83%	90%
IT	39%	40%	50%	60%	70%	82%	90%
LV	30%	35%	44%	55%	67%	80%	90%
NL	33%	42%	51%	60%	70%	81%	90%
PL	33%	33%	39%	51%	67%	81%	90%
PT	31%	43%	56%	68%	76%	89%	90%
RO	35%	39%	52%	64%	73%	82%	90%
RS	35%	38%	49%	59%	69%	80%	90%
SK	25%	25%	37%	50%	62%	79%	90%
ES	52%	52%	61%	69%	75%	84%	90%
SE	35%	35%	35%	35%	68%	90%	90%
UK	25%	25%	33%	49%	67%	83%	90%

Figure 2 - Storage Evolution Reference Case 4 * (April is the actual stock level from GSE AGSI platform)

Figure 3 shows the breakdown of transported gas for each month (average daily values for each month including exports to Kaliningrad, Turkey and Ukraine) for the Reference Case:

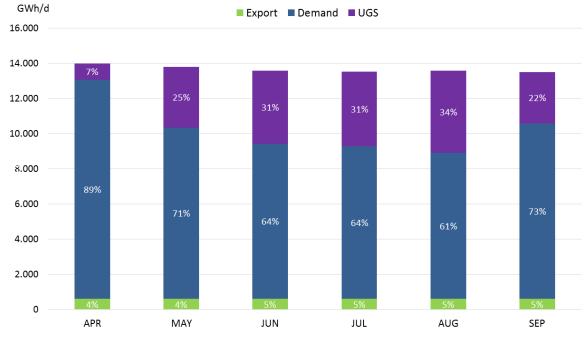
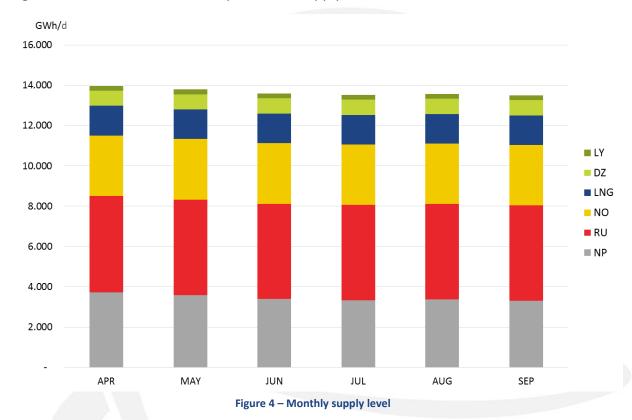



Figure 3 - Transported gas

⁴ CZd corresponds to SPP Storage Dolni Bojanovice

Figure 4 shows the level and composition of supply for each month for the Reference case:

Sensitivity-analysis – Alternative injection targets

Given the uncertainty on the level of stock at the end of the season resulting from the behaviour of market participants, two alternative targeted levels of storage have been considered: 80 and 100% on 30 September 2016.

The definition of the monthly injection and supply is following the same rules than for the Reference Case. The assumptions for the demand, export and indigenous productions are kept on the exact same level as in the Reference Case.

Figure 5 provides the daily aggregated stock level evolution curve as resulting from the modelling of Summer Supply Outlook 2016 (actual injection curve will derive from shippers' behaviour) and actual aggregated curves of last three summers:

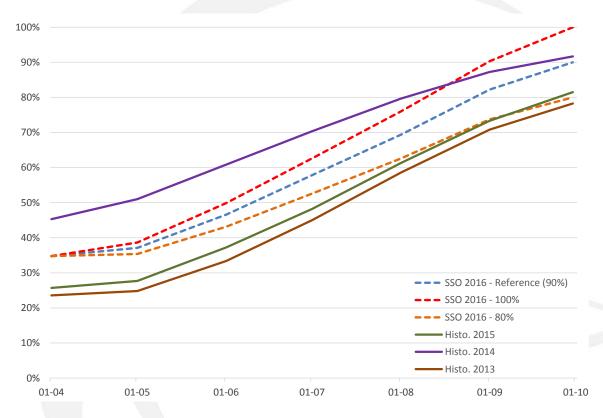


Figure 5 - Stock level development curve

The simulation shows that a 100% stock level is achievable by 30 September 2016 in almost all of the countries. Residual limitations have been identified for Bulgaria (96%) as a consequence of the reduced injection capacity at high stock levels. Nevertheless, for many operators the injection season continues in October enabling a full injection if decided so by market players.

Given the supply constraints detailed in Annex A, the different injection targets are reached through fluctuation of the supply levels. Some additional flexibility has been considered for LNG to be able to reach the 100% stock level target.

As shown in figure 6, the flexibility of the European transmission system is high enough to allow for different supply patterns while reaching 80% stock level at the end of September 2016. On the other side, reaching a 100% storage level would imply an increase in the LNG imports while the other supply sources would reach the maximum deliverability set.

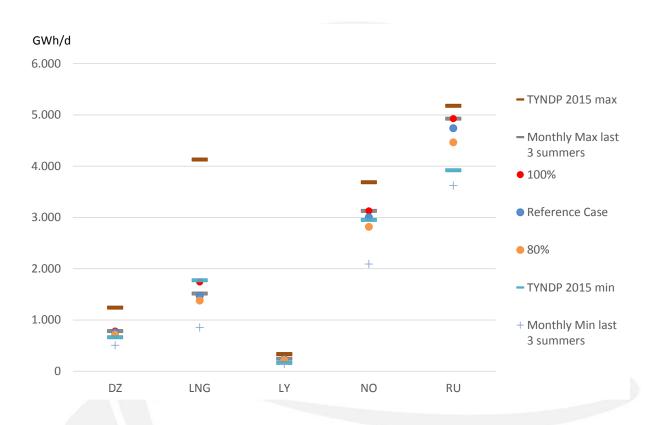


Figure 6 - Fluctuation of the supply patterns in the sensitivity analysis on the stock level ⁵

Figure 7 shows the difference between the supply shares in the Reference and the two alternative stock level targets (on a daily average basis).

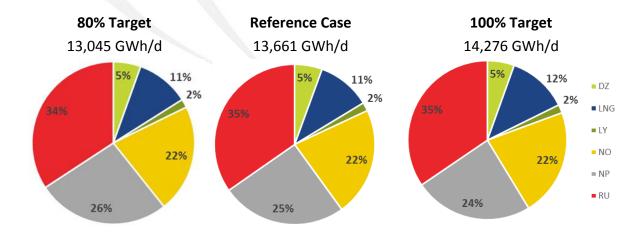


Figure 7 - Summer supply average share on a daily basis

⁵ TYNDP 2015 figures refer to seasonal min/max for year 2015

Conclusion

According to the ENTSOG modelling and supply assumptions, this Summer Supply Outlook confirms the ability of the European gas network to enable shippers to reach at least a 90% stock level in underground gas storage by the end of the Summer 2016 while ensuring the proper maintenance of the system. Actual storage level will depend on shippers' decision and the deliverability of supply sources.

Please note that the supply assumptions and the integrated flow patterns used in this report are hypothetical and have been designed for the purposes of this Summer Supply Outlook.

Legal Notice

ENTSOG has prepared this Summer Supply Outlook in good faith and has endeavoured to prepare this document in a manner which is, as far as reasonably possible, objective, using information collected and compiled by ENTSOG from its members and from stakeholders together with its own assumptions on the usage of the gas transmission system. While ENTSOG has not sought to mislead any person as to the contents of this document, readers should rely on their own information (and not on the information contained in this document) when determining their respective commercial positions. ENTSOG accepts no liability for any loss or damage incurred as a result of relying upon or using the information contained in this document.

Annex A - Methodology

Modelling tool

Modelling has been carried out using the ENTSOG NeMo Tool based on linear programming of flows. The network and market topology used in this report is similar to the one used in ENTSOG TYNDP 2015, as well as the use of temporal optimization.

The following elements are part of the modelling:

- > Definition of 6 temporal periods, each of one representing one of the months from April to September
- > Temporal optimization means the optimization of the summer as a whole period in a single simulation. This implies that the model anticipates an event, adapting the flows in the previous months and mitigating its impact.
- > Use of linearization curves, as provided by GSE Members, to consider the reduction of injection capacity when the stock level increases.

Modelling enables the identification of potential capacity and supply limitations preventing to reach the targeted stock level in each European storage by 30 September 2016, if any. The different parameters are defined as below:

> Demand

Average monthly demand forecast provided by TSOs

> Injection

The total quantity of gas to be injected from 1 April to 30 September 2016, is defined as the difference between:

- the sum of the working volume of all European UGS times the targeted stock level
- the sum of the stock level of European UGS on 1 April 2016 (source: GSE AGSI platform)

This quantity will be split per month by the model on the basis of the temporal optimization, considering the limits set by the linearization of the injection curves.

Figure A shows the average injectability curve. Default values are used in case specific country profiles are not available, calculated based on the WGV-weighted average of the provided ones. The detail of the curves defined at country level is included in Annex B.

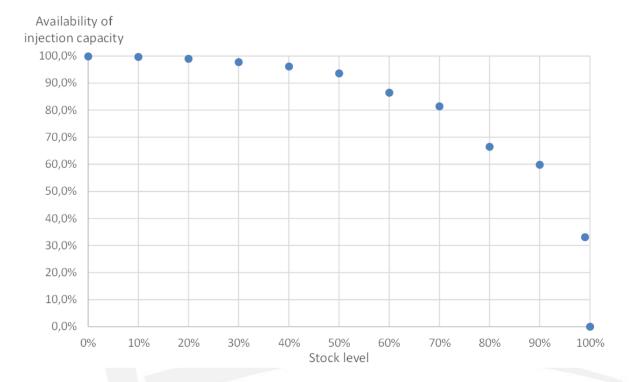


Figure A – Injectability. Average curve.

> Supply constraints

Minimum supply per source

The minimum supply per source, on daily average, is set as the minimum monthly average supply of the last 18 summer months (April to September for years 2013, 2014 and 2015) for each supply source. The detailed figures are included in Annex B.

Maximum supply per source

The maximum supply per source, on daily average, is set as the maximum monthly average supply of the last 18 summer months (April to September for years 2013, 2014 and 2015) for each supply source. The detailed figures are included in Annex B.

Use of Supplies

Modelling is handled as to ensure use of the different supply sources pro-rata of their maximum.

For LNG the model can access additional flexibility only once all sources have reached their maximum. This way, the access to higher levels than this maximum for LNG will imply it will only be used by the model when it is necessary to avoid demand disruptions.

Summary of Summer Supply Outlook 2016 assumptions

Demand and production	Average monthly forecast provided by TSOs						
Monthly injection	> European aggregated injection over the Summer: quantity necessary to reach injection target (80%, 90% or 100%) on 30 September 2016 > Monthly injection (aggregated and per Zone) is a result of the modelling						
Overall supply	Sum of demand and injection for the whole summer						
Supply shares	Supply shares is a result of the modelling						
Import routes	Split between import routes is a result of the modelling						
Cross-border capacity	Firm technical capacity as provided by TSOs taking into account reduction due to maintenance						
Reverse-flow towards Ukraine	298 GWh/d (Average over previous summer)						
Exports towards Turkey	274 GWh/d (Average over previous summer)						
Exports towards Kaliningrad	44 GWh/d (Average over previous summer)						

Annex B – Data for Summer Supply Outlook 2016

Minimum and Maximum supply per source

GWh/d	Minimum	Maximum	Additional Flex
Algeria	507	783	No
LNG	854	1.515	Yes*
Libya	140	243	No
Norway	2.090	3.129	No
Russia	3.621	4.927	No

^{*} The overall LNG supply including the additional flexibility reaches 1.743 GWh/d in the 100% sensitivity analysis for the whole summer period.

Average monthly production forecast

GWh/d	April	May	June	July	August	September	
AT	36,3	33,8	38,5	34,8	35,1	33,5	
BG	1,2	1,2	1,2	1,2	1,2	1,2	
CH	0,0	0,0	0,0	0,0	0,0	0,0	
CZ	4,5	4,5	4,5	4,5	4,5	4,5	
DEg	235	225	228	218	215	219	
DEn	8,8	8,8	8,8	8,8	8,8	8,8	
ES	2,4	2,4	2,4	2,4	2,4	2,4	
FI	0,3	0,2	0,2	0,2	0,2	0,2	
FRn	0,0	0,0	0,0	0,0	0,0	0,0	
FRs	0,0	0,0	0,0	0,0	0,0	0,0	
FRt	0,0	0,0	0,0	0,0	0,0	0,0	
HR	38,8	38,8	38,8	38,8	38,8	38,8	
HU	50,5	50,5	50,5	50,5	50,5	50,5	
DK	115,0	115,0	115,0	115,0	115,0	115,0	
IE	58,4	48,3	48,3	103,1	104,1	104,1	
IT	204,4	204,1	204,4	203,8	203,8	204,4	
LU	0,0	0,0	0,0	0,0	0,0	0,0	
NL	1.500	1.382	1.265	1.282	1.351	1.308	
PL	74	74	74	74	74	74	
RO	300	293	293	296	296	293	
RS	0,0	0,0	0,0	0,0	0,0	0,0	
SE	1,8	1,8	1,8	1,8	1,8	1,8	
SI	0,0	0,0	0,0	0,0	0,0	0,0	
SK	2,5	2,4	2,2	2,2	2,1	2,1	
UK	1.090	1.103	1.014	889	872	840	
Total	3.724	3.588	3.391	3.327	3.376	3.301	

Average monthly demand forecast

	Total	173	7	302	72	99	09	138	1.143	1.080	54	œ	835	70	454	177	41	97	49	165	109	1.524	51	20	37	1	741	352	171	230	33	21	18	73	1.606	9.963
September	Power	0	0	143	0	16	0	3	506	194	0	0	211	4	36	19	0	63	9	25	99	671	1	0	0	0	145	0	64	26	0	2	0	4	992	2.701
3,	Final	173	2	159	72	41	09	135	937	988	54	∞	624	65	418	158	41	34	43	140	43	853	20	20	37	Н	296	352	107	174	33	19	18	69	840	7.261
	Total	135	2	249	28	29	32	101	066	823	41	7	723	99	338	132	31	117	42	148	95	1.162	30	13	29	1	624	300	146	238	33	19	15	62	1.424	8.283
August	Power	0	0	113	0	15	0	3	178	148	0	0	197	4	36	19	0	68	5	27	55	544	1	0	0	0	123	0	20	62	0	1	0	3	740	2.414
	Final	135	2	136	28	45	35	86	812	675	41	7	527	62	302	113	31	27	37	121	37	617	59	13	29	1	501	300	95	176	33	18	15	28	684	5.869
	Total	137	7	242	23	61	35	84	1.005	839	32	7	263	89	377	147	36	104	45	154	97	1.477	30	14	59	т	617	282	165	246	33	18	16	61	1.407	8.682
ylul	Power	0	0	107	0	14	0	3	181	151	0	0	198	4	36	19	0	72	7	29	64	689	1	0	0	0	118	0	09	65	0	1	0	3	723	2.548
	Final	137	2	134	53	46	35	81	824	889	32	7	292	64	341	128	36	31	38	125	32	788	59	14	59	1	499	282	105	181	33	17	16	28	683	6.134
	Total	134	2	258	99	29	40	115	994	882	51	7	741	89	421	164	39	108	42	132	120	1.269	49	15	29	1	683	303	132	187	33	18	17	69	1.541	8.797
June	Power	0	0	107	0	16	0	3	179	159	0	0	153	4	36	19	0	9/	3	12	78	504	0	0	0	0	127	0	28	30	0	1	0	3	753	2.290
	Final	134	2	151	99	51	40	112	815	723	51	7	588	64	385	145	39	32	39	120	43	765	49	15	29	1	556	303	104	157	33	17	17	65	788	6.507
	Total	169	2	270	98	70	09	148	1.032	992	61	10	789	89	539	210	22	84	47	147	108	1.278	20	20	37	н	781	358	120	166	33	70	18	71	1.829	9.727
May	Power	0	0	95	0	17	0	3	186	178	0	0	155	4	36	19	0	52	2	10	26	455	0	0	0	0	112	0	13	16	0	1	0	3	740	2.159
	Final	169	2	175	98	53	09	145	847	813	61	10	633	64	502	191	55	32	42	137	52	822	20	20	37	1	699	358	107	149	33	18	18	89	1.089	7.568
	Total	215	4	314	111	83	06	229	1.353	1.353	80	15	861	110	751	292	69	98	99	250	134	1.592	22	25	89	2	942	436	116	284	33	24	23	135	2.253	12.458
April	Power	0	0	111	0	25	0	5		243 1	0	0			36	19		47	11	20		480 1	0	0	0	0	123	0	2		0	3	0	4	661 2	2.283 1.
4																																				
P,	Final	215	4	202	111	58	90	224	1.109	1.109	80	15	719	93	714	273	99	38	51	230	99	1.112	57	2.	89	5	819	436	111	266	33	21	23	131	1.593	10.176
GWh/d		AT	ВА	BEh	BEI	BGn	H	CZ	DEg	DEn	DK	EE	ES	ᇤ	FRn	FRs	FRt	GR	H	呈	Е	⊨	ᆸ	21	۲۸	¥	N	PL	ᆸ	RO	RS	SE	SI	SK	ž	Total

Note: Final demand includes Residential, Commercial and Industrial.

Linearization curves (data provided by GSE)

			In	jection av	/ailability	when wor	king gas v	olume is	at xx% lev	el		
	100%	99%	90%	80%	70%	60%	50%	40%	30%	20%	10%	0%
AT	0%	16%	71%	79%	85%	90%	94%	96%	97%	98%	100%	100%
BE	0%	37%	50%	50%	100%	100%	100%	100%	100%	100%	100%	100%
BG	0%	6%	56%	56%	100%	100%	100%	100%	100%	100%	100%	100%
HR	0%	33%	60%	66%	81%	86%	94%	96%	98%	99%	100%	100%
CZd	0%	4%	40%	45%	70%	75%	97%	100%	100%	100%	100%	100%
CZ	0%	33%	60%	66%	81%	86%	94%	96%	98%	99%	100%	100%
DK	0%	33%	60%	66%	81%	86%	94%	96%	98%	99%	100%	100%
FRn	0%	60%	63%	71%	85%	86%	87%	88%	92%	97%	100%	100%
FRs	0%	53%	56%	59%	61%	64%	67%	70%	78%	91%	98%	100%
FRt	0%	76%	82%	90%	97%	100%	100%	100%	100%	100%	100%	100%
DE	0%	36%	54%	65%	76%	86%	94%	96%	97%	98%	98%	100%
HU	0%	64%	67%	70%	73%	73%	88%	100%	100%	100%	100%	100%
ΙE	0%	33%	60%	66%	81%	86%	94%	96%	98%	99%	100%	100%
IT	0%	5%	54%	62%	73%	82%	92%	97%	100%	100%	100%	100%
LV	0%	33%	60%	66%	81%	86%	94%	96%	98%	99%	100%	100%
NL	0%	47%	66%	71%	82%	86%	92%	94%	96%	98%	99%	100%
PL	0%	33%	60%	66%	81%	86%	94%	96%	98%	99%	100%	100%
PT	0%	10%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
RO	0%	33%	60%	66%	81%	86%	94%	96%	98%	99%	100%	100%
RS	0%	33%	60%	66%	81%	86%	94%	96%	98%	99%	100%	100%
SK	0%	33%	60%	66%	81%	86%	94%	96%	98%	99%	100%	100%
ES	0%	9%	85%	90%	90%	90%	95%	100%	100%	100%	100%	100%
SE	0%	33%	60%	66%	81%	86%	94%	96%	98%	99%	100%	100%
UK	0%	33%	60%	66%	81%	86%	94%	96%	98%	99%	100%	100%

Note: default average values are used in case specific country profiles are not available.

ENTSOG Summer Review 2015

Executive Summary

ENTSOG has completed the review of the European gas supply and demand picture for Summer 2015 (April to September). The seasonal Reviews aim at a deeper comprehension of the development of the demand and supply in the previous seasons and the identification of trends that cannot be captured at national or regional level. They also help to build experience and a solid background for the assumptions considered in the Summer Outlook. Such knowledge is also factored:

- in the recurrent TYNDP process in order to ensure consistence and continuous improvement of ENTSOG reports,
- in the ongoing R&D plan.

The key findings of this review are:

- Seasonal Gas demand in Europe was very similar (-0.5%) to the one from previous summer.
- There has been a significant decrease in European indigenous production (-15%) for the second consecutive year.
- The low stock levels in the UGS at the beginning of the summer were compensated with higher injections along the season.

Detailed data for the cross-border flows is available on the Transparency Platform¹.

Stakeholders' comments on this seasonal analysis are welcome and would enable ENTSOG to improve its knowledge of seasonal and market dynamics influencing the use of infrastructure. Comments would serve as basis for the R&D plan and be beneficial to the quality of further reports.

-

¹ Transparency Platform: https://transparency.entsog.eu/

Introduction

This review, as part of the ENTSOG Annual Work Program 2016, is published on a voluntary basis and aims at providing an overview of the demand and supply balance during Summer 2015. The report brings transparency on the internal analysis carried out by ENTSOG for the purpose of developing the seasonal Supply Outlooks and the Union-wide TYDNP, as well as for the ongoing R&D plan.

The report aims to provide an overview of European trends that could not be captured at national level or regional level and to build experience for future reports. This report should not be seen as a direct review of previous Seasonal Outlooks as outlooks do not aim to provide a forecast but to better explore infrastructure resilience.

Regarding European dynamics, the report highlights the wide heterogeneity of national demand profiles and supply sources. These differences are linked among others to physical rationales such as climate, demand breakdown or producing field flexibility for example.

Seasonal Overview

Some occurrences on the European gas market caused fluctuations in the supply and demand balance during the summer period, April to September 2015. The major ones were:

- Centrica Storage Ltd announced reductions to the maximum space available at the Rough storage facility in the UK, this reduced the overall capacity from about 3.3 Bcm to between 2.6 and 2.9 Bcm (March 2015)
- Decision from the national authorities on final production cap of 30 Bcm in 2015 (from 42 Bcm in 2014) for the Netherland's Groningen field (June 2015)²
- Summer maintenance season on a number of pipelines including Norway's pipeline system, the Interconnector and the Nord Stream Pipeline (June to August 2015)
- Unplanned outages at the Norwegian continental shelf and Troll gas field (September 2015)

Market Overview

Some general gas related topics and information came up or were noticeable. Major ones were:

- Norwegian and Russian gas supplies into EU hit record highs (July and August 2015 respectively)
- The average prices from the main hubs remained at low levels due to the high LNG supply available and the oil bearish sentiment (September 2015)

² https://www.government.nl/latest/news/2015/06/23/groningen-gas-extraction-further-reduced-to-30-billion-cubic-metres-in-2015

Gas Prices at European hubs

The following two graphs show the evolution of gas prices in Europe during Summer 2015:

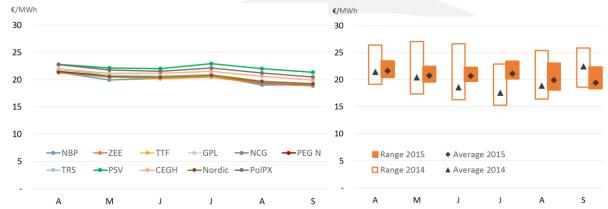
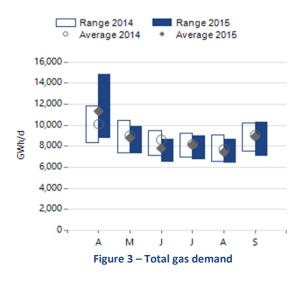


Figure 1 - Month-ahead average price at European Hubs (€/MWh)

Figure 2 – Ranges and averages of the month-ahead hub prices (€/MWh)

Figure 1 shows the evolution of the month-ahead summer average prices at different European gas hubs and figure 2 shows the maximum range and average of the month-ahead summer price for the last two summers over all the European hubs (source Bloomberg).


The average price over all hubs was slightly higher in 2015, except for September, showing a stable decreasing trend different to the one seen in the previous summer. The price range was constantly smaller than the one in summer 2014. The price convergence between the different European hubs continued with Italian PSV, Polish PolPX and Austrian CEGH remaining slightly above the other hubs. All European hubs showed a similar trend, meaning that they are basically reacting in the same direction when facing gas-related events.

Demand

European seasonal gas demand

Total gas demand was 1,598 TWh in Summer 2015, very similar (-0.5%) to the one in the previous summer.

The average demand levels in May, July, August and September were very close to those from the previous summer. April experienced significant differences, especially in the maximum level reached, probably because of the more volatile temperatures during this month. The maximum daily demand was 25% higher in April 2015 than in April 2014.

Figures 4 and 5 show the demand range and average on a monthly basis when split into Residential, Commercial and Industrial or Power Generation sectors, for the countries where

the demand breakdown is available.

Figure 4 - Residential, Commercial and Industrial (*)

Figure 5 - Power Generation gas demand (*)

(*) These graphs use data from the countries for which demand breakdown is available (Belgium, Switzerland, Estonia, Spain, Finland, France, Greece, Croatia, Hungary, Ireland, Italy, Lithuania, Luxembourg, Netherlands, Portugal, Sweden, Slovakia, Slovenia, and United Kingdom).

Electricity power generation from gas (TWhe)

The generation of electricity from gas has followed a significant (-28%) fall since Summer 2011.

This decrease follows both the increasing generation from RES source and the stable market preference for coal generation to the detriment of gas.

The data shows the decline in the thermal gap (the volume of power generation coming from fossil fuels) from 2011, but it looks to be stabilized during the last three summers, with 2015 marking first signs of recovery for gas to power consumption in some EU countries.

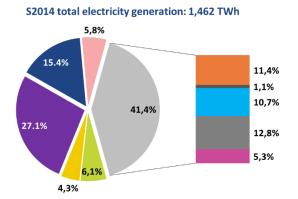


Figure 6 - Gas and coal in the electricity mix Summers 2011 - 2015

Source: own elaboration based on data provided by ENTSO-E

In absolute terms, the electricity produced from gas was 167 TWh in Summer 2015, representing 11% of the generation mix.

S2015 total electricity generation: 1,509 TWh

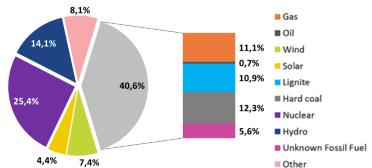


Figure 7 - Summer 2014 Electricity generation mix

Figure 8 - Summer 2015 Electricity generation mix

As shown in the graphs above, the increase in Solar and Wind and Other sources resulted in a decrease of Hydro, Nuclear and a small decrease of the fossil fuels segment from 41.4% to 40.6%.

Summer demand evolution 2011-2015

In summer 2010 the demand reached 1,945 TWh (not shown in the graph). Since then the demand has decreased for five years in a row, being the accumulative decrease since 2010 of 18%. The decrease rate from Summer 2014 to Summer 2015 was on a significant lower level than the previous ones.

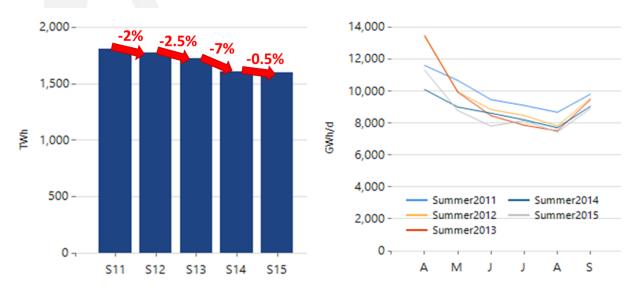


Figure 9 - Total consumption Summer 2011-2015 ³

Figure 10 - Demand. Monthly average. Summer 2011-2015

³ Please note, that the Summer demand from Summer 2014 in the UK has been updated compared to the previous edition.

By sector, for those countries where the gas demand breakdown is available, Residential, Commercial and Industrial consumption decreased (-2.0%) during Summer 2015. As shown below, demand for power generation increased (+2.9%) after a slight decrease in year 2014.

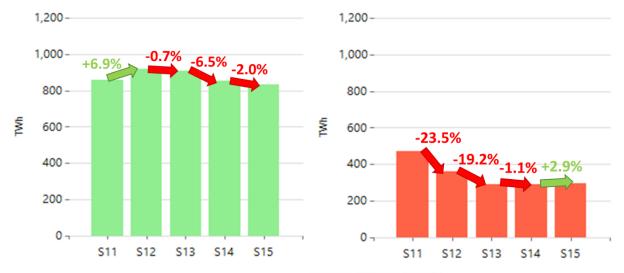


Figure 11 - Residential, commercial and industrial Figure 12 - Gas consumption for power generation. consumption. Summer 2011-2015 (*)

Summer 2011-2015 (*)

^(*) These graphs use data from the countries for which demand breakdown is available (Belgium, Switzerland, Estonia, Spain, Finland, France, Greece, Croatia, Hungary, Ireland, Italy, Lithuania, Luxembourg, Netherlands, Portugal, Sweden, Slovakia, Slovenia, and United Kingdom).

> Country detail

The evolution of gas demand compared to previous summer was geographically heterogeneous with significant variations in both directions. Bulgaria, Germany, Italy, Lithuania, and Slovakia were the countries with the higher rate of gas demand increase. The countries where the rate of demand decrease was more significant are Croatia, FYROM, Luxemburg, Portugal, the Netherlands and United Kingdom.

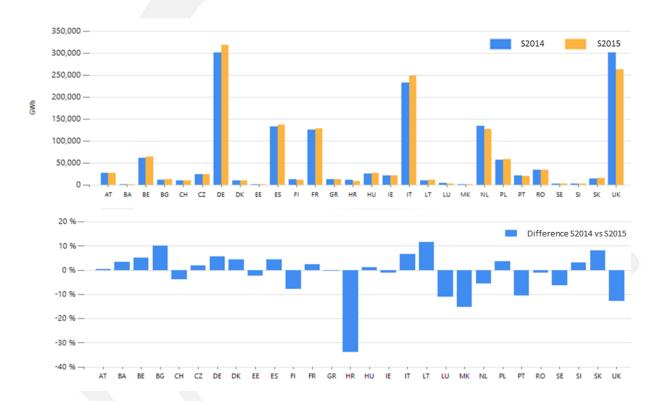


Figure 13 – Summer total gas demand. Country detail ⁴

⁴ No data available for Latvia (LV)

Seasonal modulation

The pattern followed by summer demand is linked to the climatic conditions between April and September.

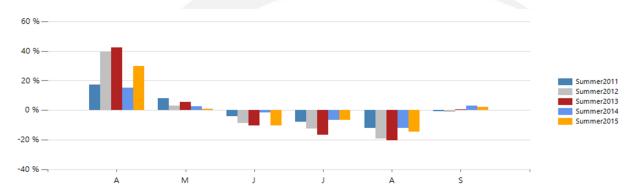


Figure 14 - Summer modulation 2011-2015

The graph above shows the deviation of the monthly average demand from the summer average for each of the last five summers:

- April has been regularly the month with the highest demand
- The gas demand in June, July and August has been systematically lower than the average
- September gas demand has been very close to the summer average during the last five years.

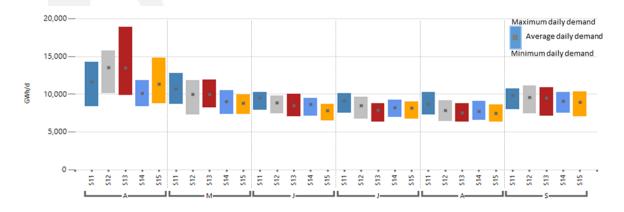


Figure 15 - Monthly demand: average and ranges

Figure 15 shows the monthly variation between the maximum and the minimum daily demand. Comparing the evolution of the daily average per month there has been a gradual decrease in the summer gas demand, since 2009 (not shown in the graph). The trend followed in the last years continued decreasing between 2014 and 2015, except for the month of April, probably due to the different weather conditions of this month during the different years.

Supply

> European seasonal gas supply

Figure 16 shows the evolution of the aggregated gas supply in Europe during the Summer 2015.

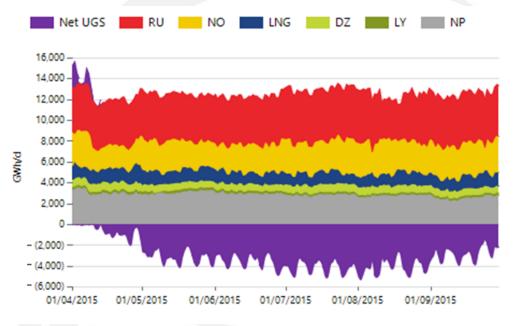


Figure 16 - Summer 2015 supply profile

The next graphs give an overview of Imports and National production supply shares during the summers 2015 and 2014 in both absolute and relative terms.

The total summer supply in 2015 was 2,305 TWh.

Figure 17 shows the seasonal supplies by source for the last two summers in absolute figures. The decrease in the production of the Groningen field due to the cap was the most noticeable reason for the decrease seen in the national production (-15%). Imports from Norway performed a considerable increase of (+18%), as did imports from Russia (+11%). There was also a slight increase in Algerian imports (+6%) and LNG (+8%).

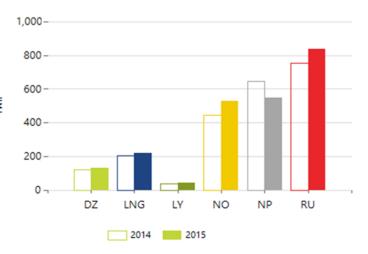


Figure 17 - Seasonal supply

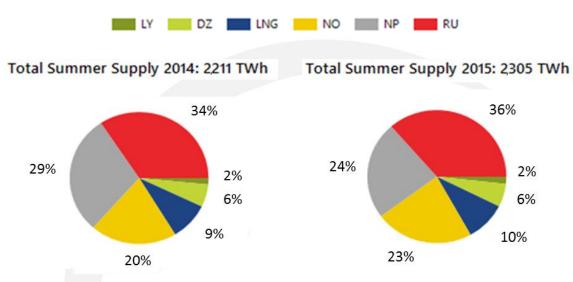


Figure 18 - Supply shares. Summer 2014

Figure 19 - Supply shares. Summer 2015

Indigenous production decreased notably for second year in a row. This decrease was mostly compensated by Russian and Norwegian gas. North African gas and LNG remained at similar levels to the ones from 2014.

> Supply modulation

The following graphs illustrate for national production and each import supply source per month, the average flow and the monthly and seasonal range (between the lowest and highest daily flow of each month and for the whole summer).

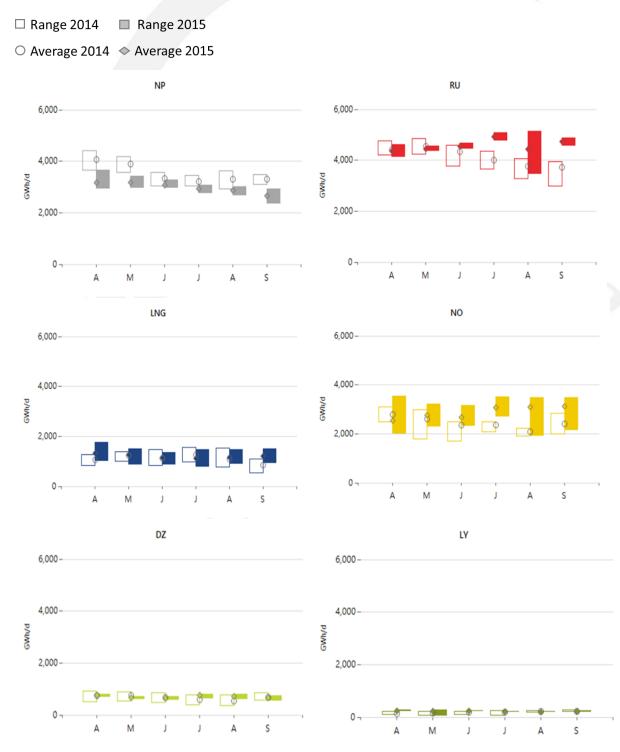


Figure 20 - Supply modulation

> Summer supply evolution 2011-2015

The following graphs show the evolution of the different supply sources both in absolute and relative terms during the last five summers.

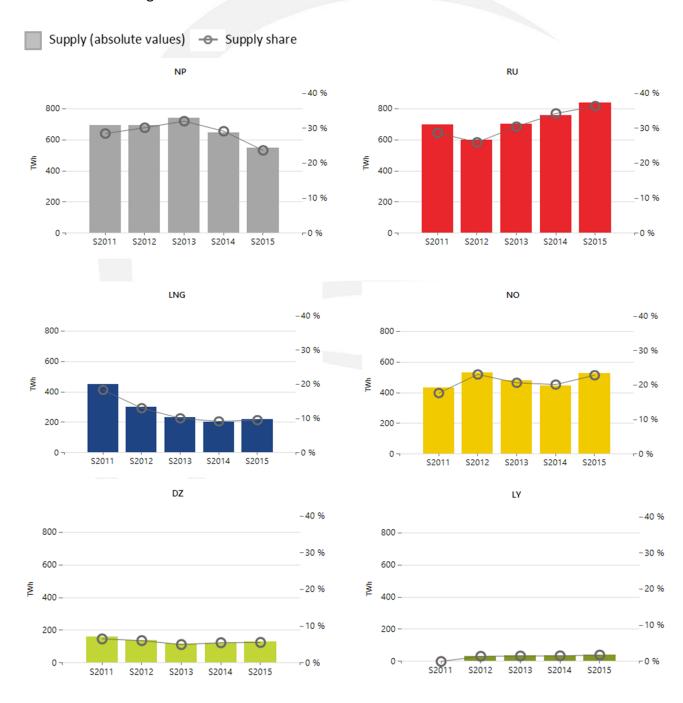


Figure 21 - Evolution of summer gas supplies 2011-2015

Underground Storages

The evolution of the injection season depends on many factors, in particular the willingness of shippers to inject gas and the actual amount of gas available for injection when considering gas demand. The first factor may be linked to price signals such as summer/winter spread unless the national regulatory framework implies some mandatory injection. The second one is linked to climatic and economic consideration having an impact on gas demand.

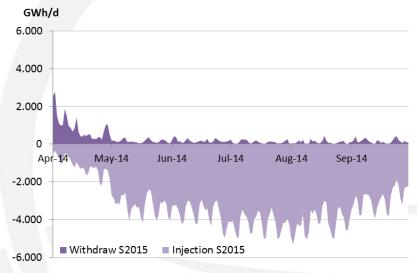


Figure 22 - UGS injection/withdraw profile EU-28 storages.

Figure 23 provides the average injection and the daily range between the lowest and highest injection for the whole Europe for every month of the Summers 2015 and 2014.

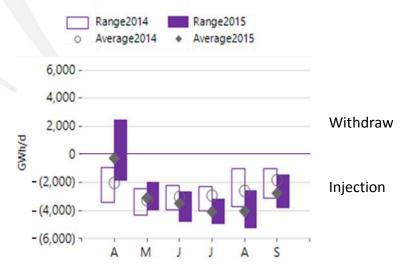


Figure 23 - UGS net injection (negative figures mean positive net injection)

The low injection rate in April and the lower stock level remaining by the end of the previous winter derived in higher injection rates after June.

The next table provides the evolution of the stock level as a percentage of the WGV during summer (source GSE AGSI platform):

Country	1-Apr-14	1-Feb-14	1-Jun-14	1-Jul-14	1-Aug-14	1-Sep-14	30-Sep-14
AT	13%	10%	20%	33%	48%	60%	67%
BE	17%	14%	22%	22%	31%	43%	54%
BG	31%	30%	30%	33%	51%	59%	71%
CZ	21%	22%	35%	52%	67%	86%	96%
DE	29%	28%	36%	45%	57%	67%	75%
DK	25%	18%	31%	42%	56%	70%	81%
FR	17%	21%	31%	43%	60%	76%	85%
ES	58%	60%	61%	62%	63%	69%	74%
HR	49%	47%	54%	65%	77%	84%	90%
HU	23%	21%	24%	28%	33%	39%	48%
IT	35%	42%	54%	65%	76%	86%	94%
LV	34%	25%	21%	37%	54%	75%	87%
NL	10%	22%	40%	56%	75%	87%	98%
PL	47%	43%	49%	61%	75%	88%	95%
PT	51%	48%	53%	49%	42%	50%	47%
SK	20%	15%	21%	32%	47%	61%	71%
UK	19%	18%	28%	49%	69%	88%	86%
EU Total	26%	28%	37%	48%	61%	73%	81%

Figure 24 - Stock level (%WGV)

Figure 25 compares the stock level evolution curve of the last five summers (source AGSI).

Having started form a lower level than the previous summers (except for \$2013), 26% on the 1st April, the stock level increased enough to reach 81% by the end of September.

For many operators, the injection season continued in October 2015.

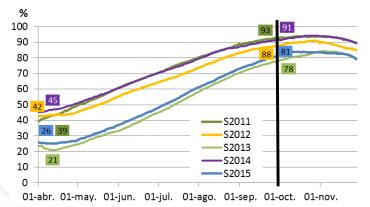


Figure 25 - Evolution of stock level. Summers 2011-2015 (Source AGSI)

	30-sep	maximum	ı stock level				
S2011	93%	94%	16/10/2011				
S2012	88%	91%	26/10/2012				
S2013	78%	85%	03/11/2013				
S2014	92%	94%	23/10/2014				
S2015	81%	84%	13/10/2015				

Figure 26 - Stock level: 30 Sept vs. max Stock level (Source AGSI)

Figure 26 shows the stock level on the 30th September in comparison with the maximum stock level setting the end of the injection season. The maximum stock level reached in 2015 was the lowest of the last years.

Transported volumes

The overall transported gas at the EU aggregated level is the sum of gas demand, exports and injection for each month.

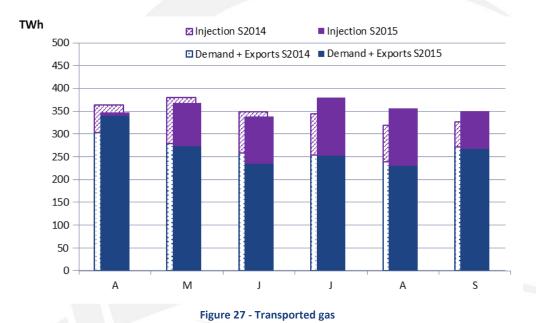


Figure 27 shows the transported volumes during Summer 2015 in comparison with those of the previous year. Total transported volumes from April to September in 2015 (2,254 TWh) were 3.6% higher compared to the ones of 2014 (2,176 TWh).

The transported volumes during April, May and June were lower than the ones from the previous summer, while they turned to be higher from July to September due to an increase in the UGS injection.