

Brussels, 13 February 2018

TYNDP 2018

Tariff assumptions for existing infrastructure and projects

Image Courtesy of Thyssengas

Considering infrastructure charges

- > For market-driven flow modelling and refined supply mixes
- Considering infrastructure cost in the modelling implies to consider tariffs for existing and future gas infrastructure
 - TSO charges
 - LSO charges
 - SSO charges

- > Looking only at TSO charges would distort the assessment... but there are stumbling blocks
 - A comprehensive approach of all gas infrastructure is necessary
 - Tariff data collected under the assumption that 'tomorrow is as today'
 - TYNDP has a 20-year time horizon
 - Discrepancy between time horizons for TYNDP assessment and data availability for tariffs (a few years at best)

Need for a global approach to tariffs

Charges at Interconnection Points (IPs) and other points

- > First, inclusion of IP tariffs will lead to market-oriented flow patterns
 - Consider IP tariffs between gas hubs
 - Network user optimisation is focused on arbitrage opportunities by checking hub prices and IP tariffs (a cost for network users)
 - Actual and up-to-date IP tariffs are key to market-oriented flows *which information source?*
- > Second, LNG and storage tariffs must be taken into account for a comprehensive picture
 - Regasification terminals are essential in many countries to ensure gas supplies
 - Storage facilities provide flexibility to TSOs and network users
 - Therefore, skipping LSO and SSO tariffs is not an option and would only distort the TYNDP assessment (system and projects) *but which information source?*

Data sources for existing infrastructure

Sources for existing infrastructure

Tariff data sources for IPs, LNG terminals and storages

- > Since December 2017, ENTSOG's Transparency Platform (TP) is a key source for IP tariffs
 - Art. 31 (Form of publication) of the Tariff Network Code (TAR NC) sets out that ENTSOG's TP will provide a link to tariffs published by TSOs/NRAs
 - Tariff information at IPs are published by TSOs directly on the TP
- > Ongoing discussion with GLE and GSE to access tariff data for LNG terminals and storages
 - Help from GLE and GSE is central to facilitate ENTSOG's tasks

ENTSOG's methodology for tariffs

ENTSOG's methodology for tariffs

Overview

- > For existing infrastructure (IPs, LNG terminals and storages)
 - Find IP tariff components on ENTSOG's TP and/or TSO/NRA websites
 - Estimate flow costs at IPs
 - Consider tariffs at LNG/storages + TSO connection points

> For infrastructure projects (IPs, LNG terminals and storages)

- Use simple proxies if possible, not project costs as a basis
- Use alternative proxies when necessary
- In PS-CBA, sensitivity analysis necessary for tariffs at new projects

ENTSOG's methodology for tariffs (1/5)

For existing infrastructure (1/2)

- 1. Find IP tariff components on ENTSOG's TP and/or TSO/NRA websites available from the link on ENTSOG's TP
- Consider yearly firm tariffs at each side of EU internal IPs (and 3rd country IPs if available) same as ACER's MMR
 - Yearly tariffs: assumption that yearly products are the most subscribed products, as shown by recent data from a majority of EU TSOs for ENTSOG's draft TAR NC monitoring report
- Get capacity and commodity components
- Tariffs valid at 1 January 2018
- Apply unit conversions (exchange rates at 1 January 2018, GCV, capacity/commodity units)
- Data is then converted to a 1 GWh/d flow
- Cross-check with ACER's MMR data

Tariff Period ▲	Point Name ▼▲	Direction	Operator VA	+	Capacity type ▼▲	Product Type VA	Applicable tariff in common unit [value]	Applicable tariff in common unit [unit]	Start time of validity	End ti of valio
Tariff Peric	Point Name	Directio	Operato		f	year	Applicable	Applicable	Start time	End tin
01/01/2017 06:00 01/01/2021 06:00	Oberkappel	entry	Gas Connect Austria		Firm	Yearly	0.00356164	Euro/ (kWh/h)/d	01/01/2017 06:00	01/01/2 06:0
01/01/2017 06:00 01/01/2021 06:00	Überackern ABG (AT) / Überackern (DE)	exit	Gas Connect Austria		Firm	Yearly	0.00942500	Euro/ (kWh/h)/d	01/01/2017 06:00	01/01/2 06:0
01/01/2017 06:00 01/01/2021 06:00	Oberkappel	exit	Gas Connect Austria		Firm	Yearly	0.00942500	Euro/ (kWh/h)/d	01/01/2017 06:00	01/01/2 06:0

ENTSOG's methodology for tariffs (2/5)

For existing infrastructure (2/2)

- 2. Estimate flow costs first at each side of the border, then at the IP
- Load factor: an assumption on the usage profile of the capacity. Assumed: LF = 100% → same as ACER
 - MMR: E.g. when the entire IP charge is expressed in volume units (e.g. Bulgaria BGN/1,000 m³), and also for the tariff commodity component that several TSOs apply, the assumption made is that the volume equivalent to be simplified energy content (i.e. 365 GWh/year) is flown constantly along the yearly period. This would equal to a capacity load factor of 100%. This supposition leads to an estimation of cross-
- $Load factor = \frac{Average flow}{Peak flow}$

- Focus on hub borders by weighting tariffs at each border side with technical capacity
- Tariffs are first fully 'commoditised' into costs per flow unit, in EUR/(GWh/d)/y at each side of border
- Then, conversion to EUR/(GWh/d)/d by dividing by 365 and using the assumed LF of 100%, with peak flow equal to booked capacity

	PL to CZ	POLAND	CZECH REPUBLIC	Ciessyn/CeskyTesin GazSystem	Weight 100	Во %
PL to DE_GPL						Во
	FOLAND	GERMANY_GPL	TGPS Europol Gaz	weight 100	96	
	PL to UA	POLAND	UKRAINE	Hermanovicze Gaz System	Weight 100	96
	PT to ES	PORTUGAL	SPAIN	VIP IBERICO REN	Weight 100	80 %
	RO to BG	ROMANIA	BULGARIA	Negru Voda I / II Transgaz	Weight 100	80 %

→ Finally, add up the entry and exit sides to get flow costs at existing IPs

ENTSOG's methodology for tariffs (4/5)

For infrastructure projects (1/2)

Any calculation of tariffs based on announced project costs would be influenced by too many possible parameters (f-factor from CAM NC, CBCA analysis, CEF, tariff methodologies...) → therefore, an harmonised methodology using proxies is better

→ Start with a simple proxy for tariffs at IPs, storage points and LNG points if possible

same entry/exit tariff of the existing IP

IPs: 1. use average tariff of existing IPs in TSO systems if any

Storages: 1. use average tariff of existing storages in TSO systems if any + GSE for SSOs

LNG: 1. use average tariff of existing LNG terminals in TSO systems if any + GLE for LSOs

But in many cases, no existing equivalent infrastructure \rightarrow need for **refined proxies**

ENTSOG's methodology for tariffs (5/5)

For infrastructure projects (2/2)

- > Setting tariffs for new projects is a complex process: outcome is difficult to anticipate
 - For CBA, level-playing field assessment requires a standard methodology
 - The modelled tariff will impact on the 'over whole year, use of the project

same entry/exit tariff of the existing IP

> In case of new LNG/UGS facilities

- If facility already existing in the country average of the existing tariff (entry/exit)
- if no facility existing in the country average of all facilities in EU (entry/exit)

Proposal: in PS-CBAs, perform a sensitivity analysis on new projects tariffs (projects highly impacted by the tariff assumptions)

Thank You for Your Attention

ENTSOG -- European Network of Transmission System Operators for Gas Avenue de Cortenbergh 100, B-1000 Brussels

EML: WWW: <u>www.entsog.eu</u>