

Additional data

SJWS #2

Brussels – 18 February 2014

Additional data

> TYNDP 2013-22: the input data was limited to:

- Infrastructure projects: Capacity scenarios
- Demand scenarios
- Supply scenarios
- > With the introduction of the ESW CBA, additional data is required:

Prices:

- Gas price scenario/s
- Coal price scenario/s
- CO2 price scenario/s
- Oil price scenario/s

Other:

- Physical constants
- Social discount rate
- Cost of disruption

Prices

- Prices (gas, coal, oil and CO2) are a crucial input for TYNDP 2015 and the CBA
- Scenarios should be well balanced and should therefore capture a wide range of possible future prices
- If the high use of coal in power generation is the shared concern for many European stakeholders and institutions, the use of the 450 WEO scenario would mean that nothing is done to remedy that situation by 2025.

A possible alternative for Europe

 Gas overprice in the National Grid price scenario could be more favorable for the shortterm...

 these scenarios include a carbon tax in place partially justified by the malfunctioning of the ETS

Prices (3 of 3)

- No perfect approach:
 - Potential inconsistency by mixing European scenarios with National ones
 - It is the only one providing a wide range of market conditions.

Input Data – Physical Constants

IPCC Guidelines for National GHG Inventories – used as source Also used for UN to collect and forecast CO₂ emissions from Member countries

	Effective CO	D2 emission fa	ctor (kg/TJ)		Default NCVs a	Default NCVs and Lower and Upper Limits		
	Default Value	95% confidence Interval			of the 95	5% Confidence Intervals		
		Lower	Upper		NCV (TJ/Gg)	Lower	Upper	
Crude Oil	73.300	71.100	75.500	Crude Oil	42,3	40,1	44,8	
Gasoline (motor)	69.300	67.500	73.000	Gasoline (motor)	44,3	42,5	44,8	
Shale Oil	73.300	67.800	79.200	Shale Oil	38,1	32,1	45,2	
Gas/Diesel Oil	74.100	72.600	74.800	Gas/Diesel Oil	43,0	41,4	43,3	
Anthracite	98.300	94.600	101.000	Anthracite	26,7	21,6	32,2	
Coking Coal	94.600	87.300	101.000	Coking Coal	28,2	24,0	31,0	
Other Bitomenous Coal	94.600	89.500	99.700	Other Bitomenous Coal	25,8	19,9	30,5	
Lignite	101.000	90.900	115.000	Lignite	11,9	5,5	21,6	
Oil Shale and Tar Sands	107.000	90.200	125.000	Oil Shale and Tar Sands	8,9	7,1	11,1	
Brown Coal Briquettes	97.500	87.300	109.000	Brown Coal Briquettes	20,7	15,1	32,0	
Natural Gas	56.100	54.300	58.300	Natural Gas	48,0	46,5	50,4	
Biodiesel	70.800	59.800	84.300	Biodiesel	27,0	13,6	54,0	
Gas Biomass	54.600	46.200	66.000	Gas Biomass	50,4	25,4	100,0	

Decision is needed on which 'coal' to use

In the modelling approach, the usage of Natural Gas (also shale), Bio-gas, Coal and possibly oil is foreseen.

Social discount rate

- Low SDR is a way to favor long term benefits when High SDR goes in favor of projects bringing early benefits.
- A single SDR across Europe ensures the absence of discrimination based on the level of economic development of EU countries.
- According to literature SDR ranges between 3.5 and 5.5 %.
- ENTSOG has proposed a **4.5%** value in the methodology published 15/11/13

