

Technical Association of the European Gas Industry

A screenshot on Oxygen management in Biomethane in Europe

19/11/2025

Sandy BSAIBES - Research Engineer in Gas Quality at NaTran R&I

ENTSOG Gas Quality Workshop

Background

Background

Ouality of biomethane required in European countries for injecting into natural gas grid-update – February 2024

	FR	NL ⁴	ES	SE	DE	СН	AT	ıπ	DK	GB ²	BE ¹⁷	CZ	PL	IE
O ₂ (% Mol)	0.01 (exempti on: up to 0.7% in the transmis sion grid / up to 0,75% in the distributi on grid/ exemptio n up to 0,4% in the distributi on grid for new projects > 2023)	≤0.0005 (High pressure L - HTL) ≤0.5 (Regional L – RTL) ≤0.5 (Distribut ion L – RNB)	<0,3 in transmis sion grid < 1 in distributi on grid ¹	≤1	< 0.001 (MOP > 16bar) < 3 (MOP <16 bar)	< 0.5	< 0.02	≤ 0.6	< 0.5	< 0.2 < 1 for MOP< 38 bar	When the gas can reach an Intercon nection Point: 0.001, 0.1 depending on location When the gas cannot reach an Intercon nection Point: 0.5	≤ 0.02 Transmis sion ≤ 0.5 distributi on	< 0.5	<0.2 on transmis sion grid < 1.0 on distributi on grid ¹²

Background

6 N 16726:2025 "Gas infrastructure- Quality of gas- Group H"

Parameter	Maximum limit
Oxygen	1% or below 1% to 0,01% or below 0,01% to 0,001% according to assessment process

In the gas infrastructure the concentration of oxygen shall be no more than 1 %.

However, if it can be demonstrated by an **assessment process** that a gas with oxygen content can flow to installations with proven sensitivity to oxygen at the level:

- of below 1 % to 0,01 %, the maximum limit shall be lowered to the maximum acceptable limit, expressed as a moving 24-hour-average.
- of below 0,01 %, the maximum limit shall be limited to 0,001 % at the lowest, expressed as a moving 24-hour average. Solutions for protecting these specific installations shall be defined in co-operation of the parties concerned, as part of the assessment.

NOTE 1 Most applications can accept a level of 0,01 % of oxygen or higher; certain types of underground storages are sensitive to oxygen contents higher than 0,001 %.

On a case-by-case basis, it can be required to identify the techno-economical optimal solution enabling the level of O2 acceptable for the part of the gas grid affected, e.g. from biomethane producers to installations sensitive to O2.

The assessment process for identification of installations sensitive to O2, and evaluation of the applicable threshold and responsibilities need to be stipulated to facilitate the application of the standard requirement on O2 content.

NOTE 2 Considering the expected development of biomethane production, the lower maximum limit of 0,01% will probably have to be reassessed upwards in the coming years.

NOTE 3 1% is equal to 10000 ppm and 0,001% is equal to 10 ppm.

More information on oxygen origin, challenges, mitigation measures and measurements are given in Annex I.

Questionnaire on O2 management by G5 "Gas quality and metering" of MARCOGAZ

Presentation of the questionnaire: content

Questions related to the network structure (Picture of Mid-2025) Questions related to the network structure (In 2030) Questions related to EN 16726

(Gas infrastructure - Quality of gas - Group H)

Questions related to the monitoring

Questions related to side effects of O2:

Questions related to mitigation of O2:

- Biomethane injection points : number and size
- Reverse flow stations: number + quantity of biomethane injected
- Sensitive end-users: number, kind and level of sensitivity
- Annual average amount of flow of injected biomethane compared to the total flow of gas + level of O2 in the biomethane and in the grid

- Biomethane injection points: number and size
- Reverse flow stations: number + quantity of biomethane injected
- Sensitive end-users: number, kind and level of sensitivity
- Annual average amount of flow of injected biomethane compared to the total flow of gas + level of O2 in the biomethane and in the grid

- Country position regarding the implementation of EN16726
- Level of implementation as TSO or DSO
- Assessment processes: are there established processes + experience to share

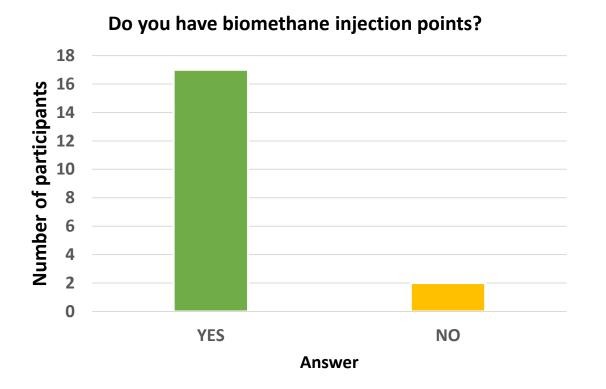
- How O2 is measured: kind of analyzers, which point of the grid, simulation tools, ...
- Incidents related to the increase of O2 in the network
- Sensitive end-users: experience to share?
- EN16726: strategies to respect the limits of EN16726
- Solutions to prevent problems related to the side effects of O2
- Technologies to treat
 O2 before injection
- Current and future research projects
- MARCOGAZ TF
 dedicated to issues
 related to O2

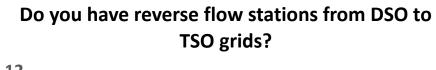
Participation

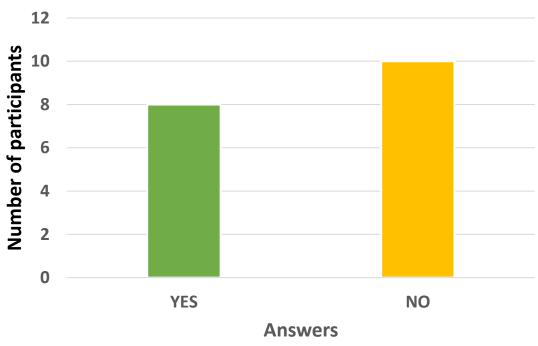
Participation

Country	Gas Operator	TSO/DSO/SSO			
Spain —	Enagas	TSO			
Spain	Sedigas (Spanish Gas Association)	TSO	DSO		
Denmark	Energinet	TSO			
The Netherlands	Gasunie	TSO		SSO	
Ireland	Gas Networks Ireland GNI	TSO	DSO		
	GRDF		DSO		
France	NaTran	TSO			
	Storengy			SSO	
IA-I.	Italgas		DSO		
ltaly ——	Snam	TSO		SSO	
Latvia	JSC GASO		DSO		
United Kingdom	National gas	TSO			
Austria	Netz Niederösterreich GmbH, (NNOe)		DSO		
Austria	Netz OÖ		DSO		
Sweden	Nordion	TSO	DSO		
Germany	OGE	TSO			
Poland	Polska Spółka Gazownictwa (PSG)		DSO		
	Fluvius		DSO		
Belgium	ORES		DSO		
_	Fluxys	TSO			

- 20 participating gas operators
- 13 different countries
 - **→** 10 TSOs
 - **→** 11 DSOs
 - → 1 SSO (since Snam and Gasunie participated as TSOs)

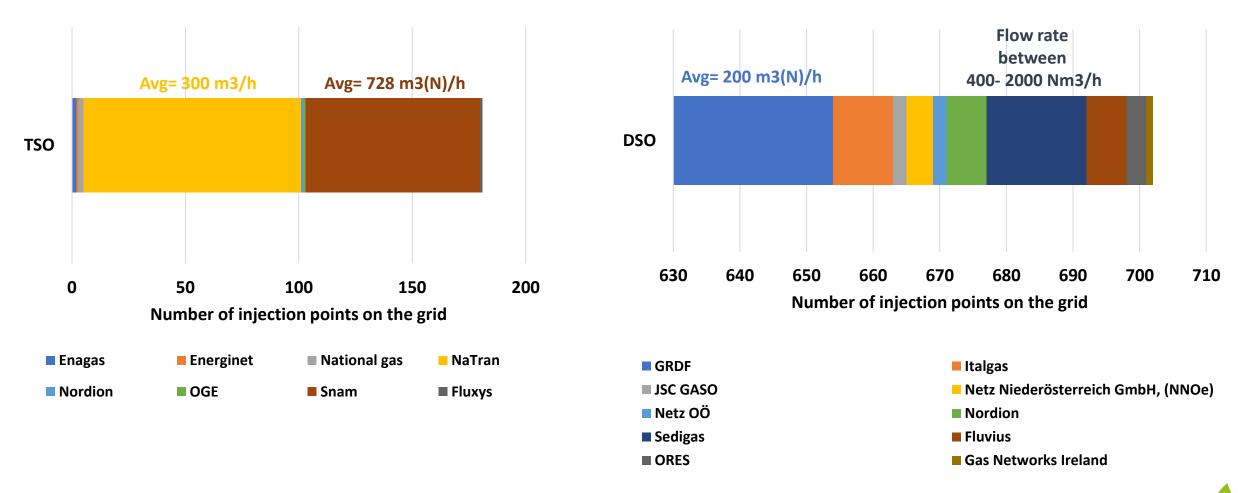


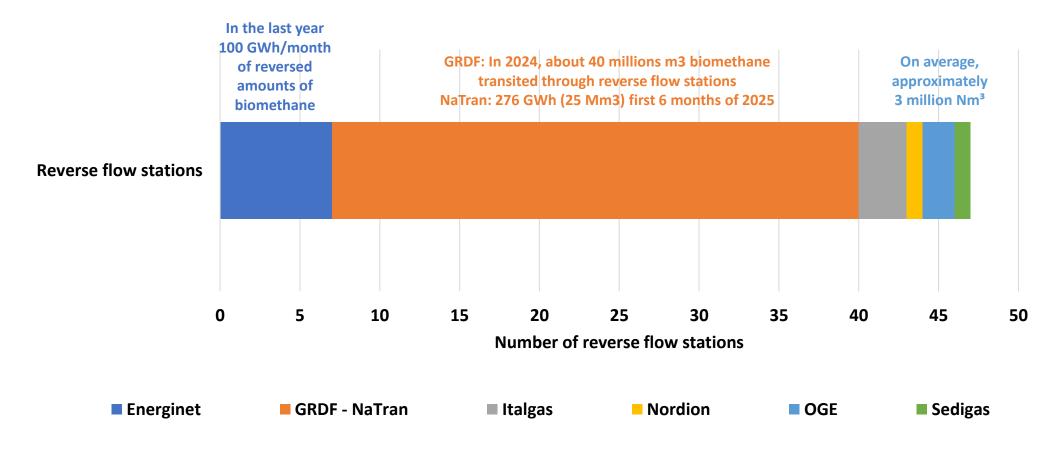

Analysis of collected data



Questions related to the network structure (Picture of Mid-2025):

Do you have biomethane injection points and reverse flow stations?




^{*} No: One of the participants is a storage operator

Questions related to the network structure (Picture of Mid-2025): How many biomethane injection points and what size m3(N)/h?

Questions related to the network structure (Picture of Mid-2025): How many reverse flow stations and what size?

Questions related to the network structure (Picture of Mid-2025):

What is the level of biomethane and O2 in the gas grid?

0,01-7%

Annual average amount (in %) of flow of the injected biomethane compared to the total flow of gas in the grid

0-1%

Level of O2 in biomethane (at biomethane injection points)

0-1*%

Level of O2 in the gas grid (once biomethane is blended with natural gas)

*when no mixing with natural gas is occuring

Questions related to the network structure (Picture of Mid-2025):

Are you dealing with sensitive end-users? What is the level of sensitivity?

Sensitive end-users	Level of sensitivity
Underground storages	 0.001 % mol must be maintained (unless no technical necessity). 10 to 200 ppm (daily value) = or < 0,01 %mol <=1 to 0,01 % mol/mol 0.5% or 0.2% < 0.5 %mol, although not more than 0,1 %mol on a yearly basis (365 consecutive Gas days)
Calibration facilities	• <=1 to 0,01 % mol/mol
Power generation sector	• 0,5% mol
Adjacent TSOs Interconnector operators	• 10 to 1000 ppm
Industrial customers using gas as a raw material	 0,1 to 0,001 %mol ≈ 1000 ppm (instantaneous value) < 1 to 0,01% mol/mol is acceptable

Questions related to EN 16726 (Gas infrastructure - Quality of gas - Group H)

Position/s in regard to implementing the standard EN 16726 for oxygen levels

Implementation

- NNOe & Netz OÖ Austria
- Nordion Sweden
 Acceptance of EN16726 on both DSO

and TSO but the TSO gas specification have harder limits of the gas

- Storengy France
- DVGW Germany

Codes of Practice of DVGW are perfectly aligned with national standards given by DIN. As EN 16726:2025 becomes DIN EN 16726:2026 Germany will strive for implementation.

Alignment with EN16726

- Sedigas Spain
- Snam Italy

O2 concentration in the national specification is up to 0.6% → biomethane plants are able to cope with this value without problem.

- National gas United Kingdom

 Up to 1mol% may be acceptable for transportation/such gas does not flow to UGS which cannot tolerate

 > 0.001mol%. The current legal limit for transmission is 0.2mol%
- GNI Ireland

For gas on the Distribution system where the limit for O2 is ≤ 1.0 (mol)%

Fluxys Belgium

TSO will respect the rules as stated in the EN 16726, knowing that limitation to 0,001 % mol/mol is a significant limitation on biomethane evolution

• Fluvius Belgium
DSO < 5000 ppm

No implementation

Energinet Denmark

The Gas quality is regulated by national law

GRDF France

Discussions between Frensh gas infrastructure operators

NaTran France

100 ppm or more to favor the development of biomethane with exemptions from biomethane injection points at up to 7.000 ppm historically (now 4.000 ppm).

A-deviation

GNI Ireland

On the basis that the current O2 limit for gas on the transmission system < 0.2 (mol)%.

Snam Italy

A deviation only for the upper maximum level of 1%.

Questions related to EN 16726 (Gas infrastructure - Quality of gas - Group H)

Assessment processes, regarding sensitive users to O2 (how a user or an installation is determined as sensitive to O2 and how the level of sensitivity is determined)

Announcement of O2 increase to the market and questioning sensitive users on their precise reasons and limitations

Evaluation of the sensitive facilities +
Determination of the maximum allowed
percentage of O2 for sensitive end-users

Creation of an interoperator Workgroup between UGS, TSO and DSO specifically dedicated on how to manage oxygen issues

Feedback

Gas market consultation + contractual limits

Discussions with industrial users to know the level of sensitivity of their processes

Discussions also with UGS and other TSO to get limit values to write in IO agreements

Performing a network study for each new Biomethane
Network Entry Facility connected to the Transmission →
determination of the downstream gas composition + if
sensitive end-users would be subjected to higher O2 gas

Questions related to the monitoring

O2 Measurement and simulation

O2 measurement equipment/ technologies	At which points of the grid are the measurements done?				
Electrochemical sensorGas Chromatography	 Biomethane injection points Reverse flow stations Compression stations Interconnection points Underground storages/ salt caverns LNG terminals in the future 				
 Galvanic fuel cell sensor Chemiluminescence technology Thermo-paramagnetic sensor 					
 Laboratory analysis: GC-TCD, μGC-TCD, 	CitygatesEntry and exit points of the network				
Simulation tools	How simulation tools are used?				
	Ensure that O2 content above the maximum allowed does not reach sensitive users.				
	Track the gas quality for points without gas quality measurements.				
 Simulation tools are used or are under investigation 					
Simulation tools are used of are under investigation	Determine the likely penetration of higher O2 gas from a prospective biomethane connection.				

Questions related to the monitoring

Current and upcoming research projects

France

Optimization of the O2 content injected

Alternative desulfurization technologies which do not require the adjunction of O2

Catalytic deoxygenation to remove oxygen once it is on the gas

UK

Plans to conduct an innovation project to examine oxygen removal technologies

Other countries

No technologies implemented yet/ No experience

Biomethane producer is responsible to reach the gas quality at the injection point

What do we learn?

What do we learn from the first analyzed results?

- 17/18 participating gas operators have biomethane injection points
- 8/18 participating operators have reverse flow stations
- 0,01-7% Annual average amount (in %) of flow of the injected biomethane compared to the total flow of gas in the grid
- 0-1% Level of O2 in biomethane and in the gas grid (Max 1% in the gas grid when no mixing with natural gas is occuring)
- Sensitive end-users: UGS, calibration facilities, industries, adjacents operators, power stations
- Several analysis technologies are implemented as well simulation tools are used to monitor O2 levels in the gas
- Several assessment processes are already being used to determine sensitive end-users and levels of sensitivity
- Research projets are being developed to limit the level of O2 in biomethane

The outcome of this questionnaire will be valuable for the work done in the Task Force O2 of CEN/TC 234/WG11 aiming to summarize the present knowledge of O2 and its impact on the gas system

marcogaz

Technical Association of the European Gas Industry

Thank you!

