TYNDP 2024

The Hydrogen and Natural Gas TYNDP

Hydrogen Infrastructure Gaps Identification Report

TABLE OF **CONTENTS**

1	INT	RODUC	CTION	4
2	FEE	DBACK	SECTION	5
	2.1	From	draft to final TYNDP 2024	5
		2.1.1	What has happened since the draft TYNDP publication?	5
		2.1.2	Why a feedback section?	5
	2.2	ACER	Opinion and Recommendations	5
		2.2.1	Recognition of improvements	5
		2.2.2	Short-term Recommendations	6
		2.2.3	Medium-term and long-term Recommendations	7
3	HYE	ROGE	N INFRASTRUCTURE LEVELS	10
	3.1	PCI/P	MI hydrogen infrastructure level	10
	3.2	Advan	ced hydrogen infrastructure level	14
4	INF	RASTR	UCTURE GAPS IDENTIFICATION (IGI) INDICATORS	18
	4.1	IGI ind	licator 1: Hydrogen market clearing price spreads in DHEM	19
	4.2	IGI ind	licator 2.1: Curtailed hydrogen demand in DHEM and DGM for reference weather year	20
	4.3	IGI ind	licator 2.2: Curtailed hydrogen demand in DHEM and DGM for stressful weather year	21
5	DIS	CLAIMI	ERS	22
6	ASS	SESSME	ENT FOR 2030	23
	6.1	Infrast	ructure Gaps Identification	23
		6.1.1	Assessment of PCI/PMI hydrogen infrastructure level	23
		6.1.2	Assessment of Advanced hydrogen infrastructure level	43
	6.2	Comp	arison between PCI/PMI hydrogen infrastructure level and advanced infrastructure level.	61
		6.2.1	Maximum utilisation of interconnections	61
		6.2.2	Analysis with hypothetical infrastructure approach	66
		6.2.3	Identification of projects that solved or mitigated infrastructure gaps	67
7	ASS	SESSME	ENT FOR 2040	68
	7.1	Infrast	ructure Gaps Identification	68
		7.1.1	Assessment of PCI/PMI hydrogen infrastructure level	68
		7.1.2	Advanced hydrogen infrastructure level	87
	7.2		arison between PCI/PMI hydrogen infrastructure level and Advanced hydrogen ructure level	106
		7.2.1	Maximum utilisation of interconnectors	106
		7.2.2	Analysis with hypothetical infrastructure approach	110
		7.2.3	Identification of projects that solved or mitigated infrastructure gaps	111
8	CON	NCLUSI	ONS	.112

ANNEX I: NODE-SPECIFIC HYDROGEN PRODUCTION CAPACITIES	114
ANNEX II: YEARLY ENERGY FLOWS (IN EU-27 AND UK) FOR REFERENCE WEATHER YEAR AND STRESSFUL WEATHER YEAR IN 2030 AND 2040 ASSESSMENT CASES	120
ANNEX III: MONTHLY ENERGY FLOWS (IN EU-27 AND UK) FOR REFERENCE WEATHER YEAR AND STRESSFUL WEATHER YEARS IN 2030 AND 2040 ASSESSMENT CASES	126
LIST OF FIGURES	200
LIST OF TABLES	202
LIST OF ABBREVIATIONS	204
COUNTRY CODES (ISO)	206
LEGAL DISCLAIMER	207

1 INTRODUCTION

The TYNDP 2024 Hydrogen Infrastructure Gaps Identification report (IGI report) aims at identifying regional infrastructure gaps within the assessed sets of hydrogen infrastructure assumed to be in place in a given year (i.e., hydrogen infrastructure level). IGI indicators are used for this identification.

This document is established in line with Article 13 of the TEN-E Regulation. Further details about its legal background, assumptions, modelling tools, and methodologies are provided in the TYNDP 2024 IGI methodology (Annex D2) that is cross-referencing to the TYNDP 2024 Implementation Guidelines (Annex D1) as well as to the TYNDP 2024 scenarios¹.

Infrastructure gaps identified in ENTSOG's hydrogen-related TYNDP 2024 IGI report may in some cases also be addressable by energy infrastructure solutions in other sectors like the electricity sector or the natural gas sector. This is the case for any infrastructure gaps identification that is focused on a specific energy vector. For electricity, ENTSO-E prepares the Identification of System Needs (IoSN) report, which is the equivalent to ENTSOG's IGI report.

There are two hydrogen infrastructure levels analysed as part of the IGI report (see section 3):

- ▲ A PCI/PMI hydrogen infrastructure level containing existing hydrogen infrastructure, FID hydrogen projects, and hydrogen projects on the Union list², modified by requests of the European Commission concerning import corridors.
- ▲ An Advanced hydrogen infrastructure level containing the PCI/PMI hydrogen infrastructure level as well as advanced hydrogen projects, modified by requests of the European Commission concerning import corridors.

The electricity infrastructure level considered in the IGI reflects the reference grid including generation and storage assets used in the NT+ scenario. Depending on time horizon (i.e., 2030 or 2040) different electricity projects will be considered to be part of the reference grid (as described in the Annex D1 section 2.3.2).

The analysis is performed for 2030 and 2040 for the TYNDP 2024 National Trends+ (NT+) scenario. Thereby, three indicators are used to identify regional hydrogen infrastructure gaps (see section 4).

¹ The TYNDP 2024 Annexes D1 and D2 are available on https://tyndp2024.entsog.eu/downloads/

^{2 6}th Union list of Projects of Common Interest (PCI) and Projects of Mutual Interest (PMI) (i.e., 1st Union list under the revised TEN-E Regulation) as detailed in section B of Annex VII to the TEN-E Regulation.

2 FEEDBACK SECTION

2.1 FROM DRAFT TO FINAL TYNDP 2024

WHAT HAS HAPPENED SINCE THE DRAFT TYNDP PUBLICATION?

During the TYNDP 2024 cycle, five stakeholder consultations were held, covering TYNDP reports and supporting materials, like maps and data. This is higher than in previous cycles, resulting from the implementation of the updated TEN-E provi-

sions on stakeholder engagement. A wide range of stakeholders had the opportunity to ask questions and participate in discussions along the process. Recordings of corresponding webinars can be found in the 'Events' section of ENTSOG's website³.

WHY A FEEDBACK SECTION?

This section aims at gathering the feedback received from both ACER and the EC during the TYNDP 2024 process. It describes which part of this

feedback is already addressed in the final TYNDP 2024 and which is planned to be used in future cycles, indicating which process it will feed into.

2.2 ACER OPINION AND RECOMMENDATIONS

The content in the ACER Opinion on the <u>Hydrogen Infrastructure Gaps Identification report</u>, of 27 May 2025, should be read together with its other Opinion documents on individual components of the TYNDP 2024, namely on the <u>Joint Scenarios report</u>.

While ACER recognised the hydrogen IGI report as a key, trustworthy and robust tool in shaping the European hydrogen market, it also provided a number of recommendations for further improvement.

RECOGNITION OF IMPROVEMENTS

ACER recognises ENTSOG's efforts in addressing the challenges of developing methodology and producing analytical outputs for the future European hydrogen network – which not only is yet to be built, as well as subject to the development of dedicated

policy. It acknowledges that, compared to TYNDP 2024, ENTSOG improved stakeholder engagement, organising public consultations and made efforts to foster transparency and collaboration in the development of the underlying methodology.

SHORT-TERM RECOMMENDATIONS

The ACER Opinion, received on 27 May 2025, provides for a number of short-term recommendations listed in the table below, in the order they appear in the ACER Opinion. The TYNDP topic to which these recommendations refer to are also indicated in the table below.

Nr.	ACER short-term recommendations	Explanation	Related TYNDP topic/report – paragraph in which the recommendation is handled
1.	Publish Simulation results with the assumption of unlimited import capacity as described in paragraph (40) of this	An analysis comparing different unlimited simulations is included in the final IGI for 2030 and 2040:	Infrastructure Gaps Identification report – sections 6.2.2 and 7.2.2
	Opinion.	unlimited internal pipeline capacity (no bottlenecks due to unlimited transmission connections between nodes)	
		unlimited storage (unlimited storage withdrawal, injection and working gas volume in existing storage countries)	
		unlimited internal pipeline capacity and unlimited storage (a combination of the above)	
		 unlimited imports (unlimited import capacities for external EU supply defined in infrastructure level and years). 	
2.	Publish Analysis with hypothetical infrastructure approach with a more detailed explanation of the methodology – chapter already indicated in the IGI report.	The explanations in the methodology (Annex D2) have not been reiterated in the IGI report. Instead, relevant references have been inserted in the IGI report text.	Infrastructure Gaps Identification report – sections 6.2.2 and 7.2.2
3.	In the final IGI report, relevant tables should be complemented with units for the lists of borders exceeding the threshold of IGI Indicator 1, as it is unclear whether the figures in the table represent units of days or EUR/MWh.	Missing units in tables 11, 18, 27 and 34 were updated. Figures in the tables are in days, to display number of days where thresholds are exceeded.	Infrastructure Gaps Identification report – sections 6.1.1.1, 6.1.2.1, 7.1.1.1 and 7.1.2.1
4.	Additional figures and graphs for a clearer presentation of examples in the Annex D2.	Graphical illustrations have been inserted into Annex D2, accompanying examples in sub-section 4 of Chapter 5.1 and in Chapter 5.2.	Annex D2 – Hydrogen Infrastructure Gaps Identification Methodology – sections 5.1, 5.2
5.	[] an improvement of results presentation for the next process by presenting the results in a more interactive format, as an online dashboard, allowing the user to set the parameters/variables and obtain results based on that.	An online visualisations platform is available at https://tyndp2024.entsog.eu/visualisation-platform/	TYNDP 2024 website and TYNDP section of ENTSOG website – online visualisation platform

MEDIUM-TERM AND LONG-TERM RECOMMENDATIONS

The following table illustrates the medium and long-term ACER Opinion recommendation and the TYNDP (or ENTSOG) processes where they are tackled.

Nr.	ACER long-term recommendations (TYNDP 2024)	Related TYNDP/ENTSOG process
1.	Streamline IGI report development process (Opinion – point 2, assessment – point 22)	Recent TEN-E revisions added formal opinion and approval periods of up to 20 months to a cycle that should last between three and four years. The TYNDP 2024 Hydrogen IGI report was submitted to ACER on 10 March 2025. Key factors affecting its timeline included the joint Scenarios development, which received EC approval in January 2025, and the approval of the Hydrogen CBA methodology in February 2025. These approvals are essential as they provide core assumptions used in simulations and project assessments. To address process delays, ENTSOG began work on the Hydrogen IGI report in autumn 2024, using preliminary assumptions and simulation results. Until the relevant methodology and the 2024 Scenarios were formally approved, ENTSOG took into account feedback received during periodic exchanges with the EC and ACER in order to progress with the IGI simulations and report. While this allowed submission in March 2025, it caused duplicated work and a series of unnecessary simulation efforts. The guidance documents, produced before final CBA approval, were more extensive than needed, further prolonging the drafting and stakeholder validation processes. It must also be acknowledged that TYNDP 2024 in particular had an experimental nature, with a consolidated hydrogen project base, a new model, interlinking the hydrogen and electricity sectors, a new CBA methodology and an updated TEN-E process, all in the same cycle. In future, ENTSOG will consolidate on the experience from TYNDP 2024, as well as on the learnings from its exchanges with ACER and the EC. It must nevertheless be acknowledged that the increasing complexity of sector integration and the involvement of a growing number of stakeholders are making the TYNDP process lengthier.
2.	Redesign the approach for the identification of infrastructure gaps (Opinion – point 3, key findings and recommendations – point 7, ACER's assessment – point 36)	It should be noted that the scenario values for hydrogen were determined by an expansion model as explained in the TYNDP 2022 Scenario report and its accompanying documents. However, for infrastructure gaps identification purposes, an interlinked model, adding the electricity grid to the hydrogen grid was also run after the scenarios were built, using the current hydrogen infrastructure levels, as well as the relevant electricity projects instead of the results of the expansion model that had delivered the scenario values. From these new simulations, the curves for hydrogen-and methane-fired power plants were retrieved, together with updated electrolytic hydrogen production values, to maintain consistency with the electricity TYNDP. However, the location of the hydrogen production as well as its distribution over the year can thereby also change. This can affect the optimal specifications of the European hydrogen infrastructure. Therefore, a per-border gap specification would provide an incomplete answer to the question of identifying optimal capacity needs, reflecting infrastructure needs only for part of any given year. With specific regards to cost information, this is requested from promoters for each PCI/PMI selection. Over cycles, ENTSOG gradually added cost-related elements in the data collection. For instance, in the 1st selection process under the most recent TEN-E revision, a specific de-aggregation requirement was added for new and repurposed sections of projects, as well as a break-down of investment costs by year. For non-PCI/PMI candidate projects, ENTSOG is required to respect the request for confidentiality of project information. Hence, any unit investment cost estimation for the purpose of filling-in infrastructure gaps would only be partially representative, of PCI/PMI applicant projects.
3.	Perform the IGI assessment under several scenario variants and sensitivity analyses (Opinion – point 3, key findings and recommendations – point 7)	TYNDP Infrastructure Gaps Identification Report – Choice of reference scenarios In TYNDP 2024, ENTSOG followed the European Commission's guidance to solely focus on the National Trends+ scenario for IGI simulations. Four sensitivities were added to the final TYNDP 2024 Hydrogen IGI report, for distinct hypothetical situations with unlimited capacities. These were performed for both target-years and infrastructure levels. ENTSOG acknowledges that incorporating additional scenario variants and sensitivity analyses would provide a broader perspective, thereby potentially improving infrastructure planning. ENTSOG will continue exchanging with stakeholders, including the EC, ACER and ENNOH for the choice of scenarios and sensitivities for the TYNDP 2026 hydrogen IGI.

Nr.	ACER long-term
	recommendations
	(TYNDP 2024)

Related TYNDP/ENTSOG process

4. Reconsider measurement of security of the supply risk for hydrogen projects until the market matures

(assessment – point 37)

TYNDP Infrastructure Gaps Identification Report – Stress-case assessment for hydrogen

While IGI indicator 2.1 was designed to assess the curtailed hydrogen demand in DHEM and DGM for the reference weather year, indicator 2.2 provides a complementing assessment, of hydrogen demand curtailment in climatic stress cases.

Even though the hydrogen market and infrastructure are in their early stages, the lessons learned from the gas and electricity sectors demonstrate the importance of stress testing in order to ensure credibility and to help identify bottlenecks before they turn into systemic risks.

Additionally, hydrogen production will depend heavily on variable renewable generation, making it more exposed to extreme weather variability compared to today's gas system.

Disregarding such weather-related stress-case scenarios – especially in the early stages of planning – risks underestimating flexibility and storage needs from the onset. It could lead to costly retrofits in the long run, damaging trust in a secure energy carrier – hydrogen.

Pass from interlinked energy sector models to a unified model. improve the chosen starting grid for the IGI assessment and generally improve the alignment of assumptions with **ENTSO-E**

(Opinion - point 3., assessment - subsection 2.4.)

TYNDP Process / TYNDP Infrastructure Gaps Identification Report / PS-CBA

In its previous opinion, on TYNDP 2022, ACER requested that ENTSOG implement the interlinked model jointly with ENTSO-E – with specific focus on electrolyser projects, to support individual project assessments, as well as their impact at grid-level for the purpose of the first PCI/PMI process under the revised TEN-E.

In ENTSOG's TYNDP 2024, electrolyser projects are fully considered in the hydrogen infrastructure needs assessment. ENTSOG has performed, for the second consecutive time, electrolyser project assessment, to support the EC's second PCI/PMI selection under the revised TEN-E.

While the interlinked model is under development between ENTSOG and ENTSO-E, the best approach continues to be the use of interconnected individual sector modelling, with successive data validation improvements over cycles. The Dual Hydrogen-Electricity Model (DHEM) was used for this purpose in TYNDP 2024.

With regards to the cross-sectoral coverage of TYNDP assessments, the TYNDP 2024 PS-CBA included a dedicated indicator (B4) that measures benefits and costs across energy carriers for individual projects, including an electricity-hydrogen synergy measurement.

ENTSOG is continually collaborating with ENTSO-E to ensure the same assumptions are used from the basis of TYNDP process, which are the Scenarios. Under the new Scenario Framework for TYNDP 2026, ENTSOG and ENTSO-E have been jointly working, in close cooperation with both gas and glectricity TSOs with regard to all input data. Such data has been reviewed and a dedicated Taskforce set up for quality control. Alongside this, the ENTSOs have completed an alignment survey in order to validate the input data in line with the new framework guidelines and ensuring consistency and alignment to the NECPs and, if deviated, justification has been provided. There steps represent improvements in the process to ensure sector alignment.

Use only one infrastructure level used for the IGI assessment and several for PS-CBA

(assessment - point 33).

TYNDP Infrastructure Gaps Identification Report

Only three hydrogen projects, namely two storage and one transmission project were declared in TYNDP 2024 as having the start of the construction phase ahead of the project collection. Moreover, environmental impact assessment was not required as part of the project timeline. Therefore, this proposed IGI starting grid would have not been possible to implement in the TYNDP 2024 assessment.

Following the ACER recommendation, ENTSOG will request the specified information to project promoters in the upcoming TYNDP 2026 cycle.

Depending on the number of projects in the two levels of maturity and in case there exist sufficient interconnected countries, ENTSOG will reassess the choice of the starting grid and may consider to change it, taking into account ACER's indication.

Nr. ACER long-term recommendations (TYNDP 2024)

Related TYNDP/ENTSOG process

7. Increase stakeholder engagement, including consider extending of scope of the Stakeholder Reference Group (SRG) to the IGI assessment

(ACER opinion – point 4, key findings and recommendations – point 7, assessment – point 26)

TYNDP process - stakeholder engagement

Inclusive and extensive stakeholder engagement constitute an essential pillar in the development of ENTSOG's work, including the TYNDP. In the 2024 cycle, a series of improvements have been done to extend stakeholder engagement and deepen cross-sector modelling:

- The provisions of the revised TEN-E Regulation were fully applied, amplifying stakeholder
 engagement and adding extensive consultation requirements to key-phases of the TYNDP
 process. Five stakeholder consultations have been organised for assumptions, guidance
 documents, as well as final deliverables, including presentation and discussion events.
- In particular for the TYNDP 2024 Scenarios process, the SRG was established in November 2023. The complementing expertise from this balanced group brought improvements to engagement efficiency and effectiveness of Scenarios.
- The revised TEN-E added new processes for provision of formal opinions by the EC and ACER, in particular to scenario development, infrastructure gaps identification and the cost-benefit analysis methodology for project assessment. It must be noted that while reinforcing alignment between organisations, these changes also extended the TYNDP process duration.

The priority for TYNDP 2026 is to consolidate current collaboration with the SRG and stakeholder engagement in line with the updated TEN-E. In addition, the TYNDP 2026 will involve a new stakeholder: ENNOH.

As a final comment, echoing ENTSOG's 2022 answer to a related request, it is important to underline that in the implementation in each new TYNDP, updates due to feedback from a growing number of stakeholders inevitably affect the overall timeline and introduce additional uncertainty regarding the final publication date. Multiple interactions with stakeholders, as well as potential delays in receiving their responses, further influence the project schedule.

In general, the priority for ENTSOG is to ensure, besides through validation of results, that all stakeholders have an opportunity to provide their feedback, while aligning as well as possible with the European Commission's PCI/PMI process timeline.

8. Streamline and anticipate the development of the IGI methodology, though early testing

(Key findings and recommendations – point 6, Opinion – point 5)

TYNDP process

As a general practice, TYNDP simulations are usually run with the most recent available data during a preparation phase. ENTSOG is committed to ensure model readiness as early as possible. Modelling innovations however, might require extensive testing, to confirm results are accurate and trust-worthy.

In the TYNDP 2024, the model used for IGI simulations (the DHEM) had been newly developed and therefore required such extensive testing. When a new model is introduced, testing results can either be related to its configurations or to the data inputs. Repeated iterations are usually required to reach an accurate model set-up, cross-check and validate results.

In TYNDP 2026, the approach will be maintained. While model improvements will still require testing, with the most recent available data, the robust base from TYNDP 2024 is likely to ensure testing is faster and earlier than in the previous cycle. ENTSOG shall continue informal exchanges with the EC and ACER, where preliminary results are discussed as soon as available and verified.

9. Implement ACER's recommendations regarding last-minute data updates to scenarios, as provided in its framework guidelines for the joint TYNDP

(assessment - point 28).

TYNDP Scenarios – Data collection and processing

As the ACER-commissioned study on the development of scenarios for EU-wide infrastructure planning also finds, there indeed exists a misalignment between the availability of NECP data and the development of the joint TYNDP Scenarios, as well as in the time horizons covered. In addition, the hydrogen market in particular is at an early stage, during which projections are more likely to change, as well as supporting policies.

The TYNDP 2024 Scenarios data collection was completed ahead of draft NECP publication, for which the European Commission requested updated hydrogen supply and demand data for the PCI/PMI selection process. While ENTSOG agrees data updates can be necessary in specific cases, we support a standardised, transparent approach, where data is scrutinised by relevant stakeholders.

In addition, ENTSOG and ENTSOE adjusted specific country data of the National Trends scenario, so as to respect the energy and climate target compliance. This was done in line with a publicly consulted 'Gap Closing Methodology'.

3 HYDROGEN INFRASTRUCTURE LEVELS

3.1 PCI/PMI HYDROGEN INFRASTRUCTURE LEVEL

Projects conforming the PCI/PMI hydrogen infrastructure level are shown in the Figure 1 and are listed in Annex I of the TYNDP 2024 Annex D14. The hydrogen production assets available in both hydrogen infrastructure levels are identical and stated in Annex I of this report.

This IGI report focusses the analysis on two assessed simulation years (i.e., 2030 and 2040). Not all projects included in the PCI/PMI hydrogen infrastructure level will be fully implemented in the 2030 timeframe. It might be the case that projects are composed by several phases with different commissioning years and that the commissioning year of some projects and/or phases is 2030 or later and therefore not considered in the 2030 assessment⁵. Whereas, in the 2040 assessment, full deployment of PCIs and PMIs is assumed.

Regarding intra-EU transmission infrastructure, in the PCI/PMI hydrogen infrastructure level, some Southern European countries are not connected to the European network, as visible in Figure 1. More specifically, the Greek and Bulgarian hydrogen systems are interconnected by PCIs, but remain isolated from other neighbouring countries. Countries and regions that are isolated without any cross-border hydrogen infrastructure in this hydrogen infrastructure level are Hungary, Romania, Slovenia, Switzerland, Croatia, Ireland, the United Kingdom, Cyprus, Malta, Luxembourg, the France-Southwest region, the Poland-North-region and the Poland-South region. Slovakia is isolated in 2030 and connected with Czechia and Austria only in 2040.

Regarding storage infrastructure in the PCI/PMI hydrogen infrastructure level, only Denmark, Germany, the Netherlands, France, and Spain have hydrogen storage capacities (see Table 1).

Storage capacities	Direction	2030	2040
Denmark	Injection	3.16	3.16
Denmark	Withdraw	9.5	9.5
Denmark	Working Gas Volume	100	100
France	Injection & Withdraw	10.0	10.0
France	Working Gas Volume	250	250
Germany	Injection & Withdraw	4.25	21.25
Germany	Working Gas Volume	154	359
Netherlands	Injection & Withdraw	3.3	13.2
Netherlands	Working Gas Volume	206	850
Spain	Injection & Withdraw	62.0	62.0
Spain	Working Gas Volume	708	2728
Sum	Injection	82.71	109.61
Sum	Withdraw	89.05	115.95
Sum	Working Gas Volume	1418	4287

Table 1: Hydrogen storage capacities considered in the PCI/PMI hydrogen infrastructure level for the assessed years (unit: GWh/d for injection and withdrawal and GWh for working gas volume).

 $^{4 \}quad \text{Available on } \underline{\text{https://tyndp2024.entsog.eu/downloads/}}$

⁵ Hydrogen infrastructure capacities of the PCI/PMI hydrogen infrastructure level as well as the Advanced hydrogen infrastructure level for 2030 and 2040 are published as part of the TYNDP 2024 Annex C2, available on https://tyndp2024.entsog.eu/downloads/

Regarding extra-EU supplies, the PCI/PMI hydrogen infrastructure level has limited access to extra-EU supply potential. This is particularly relevant when considering the 2030 assessment:

■ Regarding pipeline imports from extra-EU sources (see Table 2): PCIs and PMIs are considered to unlock North African, Norwegian and Ukrainian supply potential only from 2040.

Regarding hydrogen import terminals (see Table 3): In 2030, extra-EU imports will be limited to the PCI import terminals in Belgium, Germany, and the Netherlands. In 2040, higher capacity of PCI import terminals will be considered in these countries due to the planned full implementation of the multiple phases of the PCIs. In 2040, also an additional PCI import terminal located in France will be considered to be connected to the Belgian hydrogen network.

From Country	To Country	Hydrogen import capacity			lrogen supply ential		lrogen import ential
		2030	2040	2030	2040	2030	2040
Algeria	Italy	0.0	448.0	116.8	1,124.5	0.0	448.0
Morocco	Spain	0.0	106.0	0.0	106.2	0.0	106.0
Norway	Germany	0.0	432.0	146.3	724.52	0.0	432.0
Ukraine	Slovakia	0.0	218.4	85.0	878.9	0.0	218.4

Table 2: Extra-EU import capacities via pipelines considered in the PCI/PMI hydrogen infrastructure level and extra-EU supply potential for the assessed years (unit: GWh/d).

Import capacities by ship To Country	2030	2040
Belgium	59.3	193.6
France	0.0	48.0
Germany	44.2	67.7
The Netherlands	90.8	177.1
Sum	194.3	486.4
Shipped supply potential	2030	2040
Extra-EU to EU	193.3	1,327.4
Effective hydrogen import potential	2030	2040
Minimum of import capacities by ship and shipped supply potential	194.3	486.4

Table 3: Extra-EU import capacities via terminals considered in the PCI/PMI hydrogen infrastructure level and extra-EU supply potential by ship for the assessed years (unit: GWh/d).

TYNDP 2024 HYDROGEN PROJECTS - PCI STATUS (EXCLUDING ELECTROLYSERS)

		HYDROGEN TRANSMISSION PIP	ELINES	(H2T)		
	H2T-F-468	National H2 Backbone	Gas unie	FID	PCI	
*	H2T-F-899	mosaHYc - Mosel Saar Hydrogen Conversion	GRTgaz	FID	PCI	
	H2T-A-443	Nordic-Baltic Hydrogen Corridor - FI section	GASGRID	Advanced	PCI	
	H2T-A-642	HyPipe Bavaria - The Hydrogen Hub		bayernets ←	Advanced	PCI
	H2T-A-757	H2 Backbone WAG + Penta West	GAS CONNECT AUSTRIA	Advanced	PCI	
	H2T-A-788	H2 transmission system in Bulgaria		S BULGARTRANSGAZ	Advanced	PCI
*	H2T-A-906	Vlieghuis - Ochtrup	วร นาเย	1 Thyssengas	Advanced	PCI
	H2T-A-909	Connection HY-FEN-GeoH2	GRTgaz	Advanced	PCI	
*	H2T-A-926	Baltic Sea Hydrogen Collector – Offshore Pipeline [BHC]	- Sweden	N ^O RDION ENERGI	Advanced	PCI
	H2T-A-969	RHYn		GRTgaz	Advanced	PCI
	H2T-A-978	Portuguese Hydrogen Backbone		RENM Gasodutos	Advanced	PCI
	H2T-A-986	H2 Readiness of the TAG pipeline system		TAG	Advanced	PCI
	H2T-A-987	MosaHYc (Mosel Saar Hydrogen Conversion) - Germany		GRTgaz	Advanced	PCI
	H2T-A-990	Czech H2 Backbone SOUTH (formerly CEHC, Czech part)		NETHEAL	Advanced	PCI
	H2T-A-1001	Hyperlink 3 Danish-German Hydrogen Network - German	n part	gas unie	Advanced	PCI
	H2T-A-1034	Czech H2 Backbone WEST (formerly CGHI, Czech part)		No.	Advanced	PCI
	H2T-A-1035	Franco-Belgian H2 corridor (incl. WHHYN)		GRTgaz	Advanced	PCI
	H2T-A-1037	H2ercules Network North		OGE	Advanced	PCI
	H2T-A-1038	H2ercules Network West		OGE	Advanced	PCI
*	H2T-A-1052	H2ercules Network South-West	GRTg	₂ ⊃ OGE	Advanced	PCI
	H2T-A-1055	H2ercules Network South-East	GRIgo	OGE	Advanced	PCI
	H2T-A-1075	H2ercules Network North-West	tection	OGE	Advanced	PCI
	H2T-A-1096	RHYn Interco (Section 1-3) badenovaNET	ZE 📢 terri	nets bw GRTgaz	Advanced	PCI
*	H2T-A-1136	Nordic Hydrogen Route - Bothnian Bay - Finnish section	- Pipeline	GASGRID	Advanced	PCI
	H2T-A-1137	Central European Hydrogen Corridor (CEHC) (UKR part)		URIDEAN	Advanced	PCI
	H2T-A-1144	Nordic-Baltic Hydrogen Corridor - PL section			Advanced	PCI
	H2T-A-1049	Spanish hydrogen backbone 2030		enagas	Advanced	PCI
*	H2T-A-1056	H2Med/CelZa		RENM Gasodutos	Advanced	PCI
	H2T-A-1171	Nordic Hydrogen Route- Bothnian Bay- Swedish part		N ^O RDION ENERGI	Advanced	PCI
	H2T-A-1236	Danish Backbone West		ENERGINET	Advanced	PCI
	H2T-A-1264	Slovak Hydrogen Backbone		eustream	Advanced	PCI
	H2T-A-1280	Nordic-Baltic Hydrogen Corridor - LV section		conexus	Advanced	PCI
	H2T-A-1310	Nordic-Baltic Hydrogen Corridor - DE section		•• ONTRAS	Advanced	PCI
	H2T-A-1311	Belgian Hydrogen Backbone		fluxys [®]	Advanced	PCI
	H2T-A-1355	Baltic Sea Hydrogen Collector - Offshore Pipeline [BHC]	N ^O RDION E	NERGI GASGRID	Advanced	PCI
	H2T-N-569	HY-FEN H2 Corridor Spain France Germany connection		GRTgaz	Less-Adv.	PCI
	H2T-N-738	Delta Rhine Corridor H2		-⊃ oge	Less-Adv.	PCI
	H2T-N-796	FLOW – making hydrogen happen (East)		GASCADE	Less-Adv.	PCI
	H2T-N-884	CHE Pipeline		equinor 👯	Less-Adv.	PCI
	H2T-N-970	Dedicated H2 Pipeline			Less-Adv.	PCI
	H2T-N-991	AquaDuctus	fluxys [®]	GASCADE	Less-Adv.	PCI
	H2T-N-1122	Nordic-Baltic Hydrogen Corridor - EE section		elering	Less-Adv.	PCI
	H2T-N-1151	H2Med-BarMar	agas — Te	erēga Grigaz	Less-Adv.	PCI
	H2T-N-1239	Nordic-Baltic Hydrogen Corridor - LT section		Amber Grid	Less-Adv.	PCI
	H2T-N-1324	H2Med-CelZa (Enagas)		enagas	Less-Adv.	PCI

HYDROGEN STORAGE FACILITIES (H2S) Advanced H2S-A-508 H2 storage North-1 PCI Geométhane Advanced PCI GeoH2 RWE Advanced RWE H2 Storage expansion 2 Gronau-Epe H2S-A-1152 H2 storage North-2 Advanced PCI H2S-A-1238 DK Hydrogen Storage PCI Advanced H2S-A-1279 Hystock ੁਰਤਿਪਾਂ⊞ Advanced PCI RWE Advanced H2S-A-1284 RWE H2 Storage Gronau-Epe - 2nd expansion PCI storengy Less-Adv. PCI **HYDROGEN RECEPTION FACILITIES (H2L)** GਕSਪਾਮਦ Ammonia Advanced PCI H2L-A-754 ACE Terminal H2L-N-543 LH2.Rotterdam Vopak Ammonia Less-Adv. PCI fluxys[®] monia Less-Adv. 2L-N-664 Antwerp NH3 Import Terminal PCI fluxys H2L-N-820 Dunkerque New Molecules development ia Less-Adv. PCI H2L-N-968 Green Wilhelmshaven Terminal/Storage/Cracker unl per PCI Less-Adv. H2L-N-1099 Ammonia Import Terminal Brunsbuttel RWE PCI ia Less-Adv. **≥vtti** H2L-N-1100 Amplifhy Antwerp Less-Adv. PCI **≥**vtti H2L-N-1127 Amplifhy Rotterdam ia Less-Adv. PCI H2L-N-1159 bp Wilhelmshaven Green Hydrogen Hub Ö Less-Adv. PCI Ammonia Less-Adv. PCI H2L-N-1325 Zeebrugge New Molecules development

 $\textbf{Figure 1:} \ \ \textbf{Representation of the PCI/PMI hydrogen infrastructure level}.$

3.2 ADVANCED HYDROGEN INFRASTRUCTURE LEVEL

The Advanced hydrogen infrastructure level is by definition more ambitious than the PCI/PMI hydrogen infrastructure level, as it contains not only the PCIs and PMIs, but also advanced hydrogen projects, which can involve countries without PCIs and PMIs.

Projects conforming the Advanced hydrogen infrastructure level are shown in the map in Figure 2 and are listed in Annex I of the TYNDP 2024 Annex D1. The hydrogen production assets available in both hydrogen infrastructure levels are identical and stated in Annex I of this report.

Regarding intra-EU transmission infrastructure, the Advanced hydrogen infrastructure level has a higher

level of interconnections in Southern Europe, as visible in Figure 2. More specifically, Slovakia, Hungary, Romania, Croatia and Bosnia are interconnected in the Advanced hydrogen infrastructure level. Countries and regions that are isolated without any cross-border hydrogen infrastructure in this hydrogen infrastructure level are Luxembourg, Slovenia, Switzerland, Ireland, the United Kingdom, Cyprus, Malta, the France-Southwest region⁶, the Poland-North and the Poland-South region.

Regarding storage infrastructure, the Advanced hydrogen infrastructure level has higher storage capacities in Germany and in the France-Southwest region (see Table 4).

Storage capacities	Direction	2030	2040
Denmark	Injection	3.16	3.16
Denmark	Withdraw	9.5	9.5
Denmark	Working Gas Volume	100	100
France ⁷	Injection & Withdraw	19.3	19.3
France	Working Gas Volume	750	750
Germany	Injection & Withdraw	63.25	80.25
Germany	Working Gas Volume	1,532	1,737
Netherlands	Injection & Withdraw	3.3	13.2
Netherlands	Working Gas Volume	206	850
Spain	Injection & Withdraw	62.0	62.0
Spain	Working Gas Volume	708	2728
Sum	Injection	151.01	173.91
Sum	Withdraw	157.35	184.25
Sum	Working Gas Volume	3,296	6,165

Table 4: Hydrogen storage capacities considered in the Advanced hydrogen infrastructure level for the assessed years (units: GWh/d for injection and withdrawal and GWh for working gas volume).

⁶ The hydrogen southwest region would not be isolated if MidHY was considered at the same maturity status as the rest of the projects in this geographical area. The results should show that, from 2030, the MidHY project would ensure, with the HySoW project, the export of significant excess volumes of Renewable and Low Carbon hydrogen from the south west zone of France to the HI west corridor.

⁷ Some storage capacity in France is connected to the France-South region and some is connected to the France-Southwest region.

Regarding extra-EU supplies, the Advanced hydrogen infrastructure level has additional access to extra-EU supply potential compared to the PCI/PMI hydrogen infrastructure level:

- Regarding pipeline imports from extra-EU sources (see Table 5): The Advanced hydrogen infrastructure level includes access to North African (Algerian and Tunisian) supply in 2030 thanks to a project connecting Italy with this import source.
- Regarding hydrogen import terminals (see Table 6): The Advanced hydrogen infrastructure level has higher import capacity in the Netherlands and in Poland due to the inclusion of advanced hydrogen import terminals.

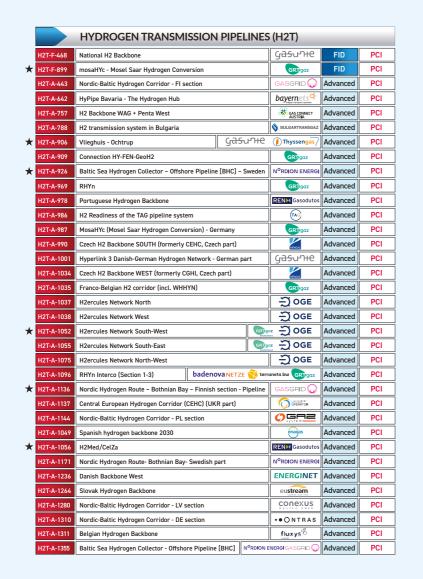
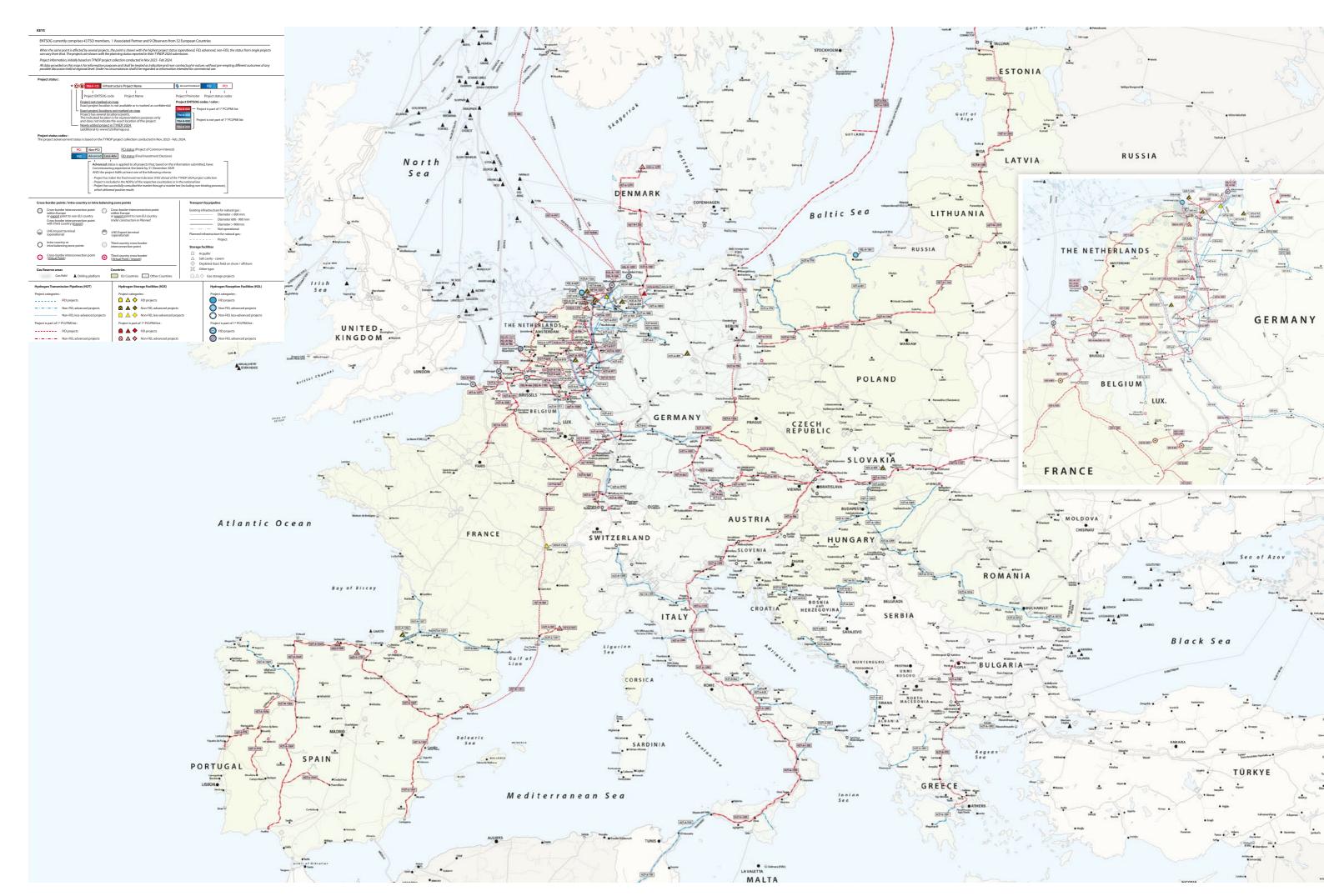

From Country	To Country	Hydrogen import capacity		O Country Hydrogen import capacity Extra-EU hydrogen supply potential		Effective hydrogen import potential	
		2030	2040	2030	2040	2030	2040
Algeria	Italy	448.0	448.0	116.8	1,124.5	116.8	448.0
Morocco	Spain	0.0	106.0	0.0	106.2	0.0	106.0
Norway	Germany	0.0	432.0	146.3	724.52	0.0	432.0
Ukraine	Slovakia	0.0	218.4	85.0	878.9	0.0	218.4

Table 5: Extra-EU import capacities via pipelines considered in the Advanced hydrogen infrastructure level and extra-EU supply potential for the assessed years (unit: GWh/d).

Import capacities by ship to Country	2030	2040
Belgium	59.3	193.6
France	0.0	48.0
Germany	44.2	67.7
The Netherlands	136.3	222.6
Poland	17.7	17.7
Sum	257.5	549.6
Shipped supply potential	2030	2040
Extra-EU to EU	193.3	1327.4
Effective hydrogen import potential	2030	2040
Minimum of import capacities by ship and shipped supply potential	227.8	549.6

Table 6: Extra-EU import capacities via terminals considered in the advanced hydrogen infrastructure level and extra-EU supply potential by ship for the assessed years (unit: GWh/d).

TYNDP 2024 HYDROGEN PROJECTS - PCI AND ADVANCED STATUS (EXCLUDING ELECTROLYSERS)



H2T-A-0	OGE H2ercules Central bayernets GR3902 noweqa ()	Thyssen	oge 📆 oge	Advanced	Non-PCI
H2T-A-66	Interconn. Croatia-Bosnia &Herzegov. (Slobodnica-Bosanski B	Pringero	Advanced	Non-PCI	
H2T-A-68	H2 Ionian Adriatic Pipeline	pringero	Advanced	Non-PCI	
H2T-A-70	Interconnection Croatia/Serbia (Slobodnica-Sotin-Bačko Novo	punacro	Advanced	Non-PCI	
H2T-A-224	Northern Interconnection BiH/CRO		₩H-GA/	Advanced	Non-PCI
H2T-A-302	Interconnection Croatia-Bosnia and Herzegovina (South)		punacro	Advanced	Non-PCI
H2T-A-303	Interconnection Croatia-Bosnia and Herzegovina (West)		briudeto	Advanced	Non-PCI
H2T-A-418	Connection Fiume Treste Livello F		snam	Advanced	Non-PCI
H2T-A-443	Nordic-Baltic Hydrogen Corridor - FI section	\equiv	GASGRID	Advanced	Non-PCI
H2T-A-444	HySoW Mediterranean (Hydrogen South West corridor of Fran	nce)	€ Terēga	Advanced	Non-PCI
H2T-A-542	HyBRIDS		₩S.G.I.	Advanced	Non-PCI
H2T-A-555	Apulia H2 Backbone		snam	Advanced	Non-PCI
H2T-A-633	GETH2-IPCEI	now	ega 📆 OGE	Advanced	Non-PCI
H2T-A-666	H2Coastlink		0	Advanced	Non-PCI
H2T-A-735	North Africa Hydrogen Corridor		SeaCorridor	Advanced	Non-PCI
H2T-A-779	Pomeranian Hydrogen Cluster			Advanced	Non-PCI
H2T-A-821	Hydrogen Highway - Northern Section	Ø SPE	Advanced	Non-PC	
H2T-A-835	SK-HU H2 corridor		eustream	Advanced	Non-PC
H2T-A-851	Southern Interconnection BiH/CRO		VBH-GAJ	Advanced	Non-PCI
H2T-A-876	IP Elten/Zevenaar - Cologne		1 Thyssengas	Advanced	Non-PCI
H2T-A-910	Western Interconnection BiH/CRO	Western Interconnection BiH/CR0		Advanced	Non-PCI
H2T-A-917	Emsbüren - Leverkusen		1 Thyssengas	Advanced	Non-PC
H2T-A-933	Hyperlink 4-5 Wilhelmshaven - Emsbüren	sengas	7 Gas u'ne	Advanced	Non-PC
H2T-A-1000	Hyperlink 1-2		g as unie	Advanced	Non-PC
H2T-A-1014	Giurgiu Nădlac hydrogen corridor with new H2 interconnector	r	TRANSGAZ TRANSGAZ	Advanced	Non-PC
H2T-A-1015	New Hydrogen pipeline from Black Sea area to Podișor		TRANSGAZ	Advanced	Non-PC
H2T-A-1049	Spanish hydrogen backbone 2030		enagas	Advanced	Non-PC
H2T-A-1065	HU hydrogen corridor I HU/UA		MOSE	Advanced	Non-PCI
H2T-A-1091	Connection of DESFA's transmission system with East Med pip	peline	leefe .	Advanced	Non-PC
H2T-A-1092	Metering and Regulating Station at UHS South Kavala		<u> </u>	Advanced	Non-PC
H2T-A-1096	RHYn Interco (Sections 4-5) badenova	anetz	E 🙌 terranets bw	Advanced	Non-PC
H2T-A-1205	Italian H2 Backbone	snam V/AV	Advanced	Non-PC	
H2T-A-1206	HU hydrogen corridor IV HU/SK	ROSZ	Advanced	Non-PC	
H2T-A-1250	NWH2		News	Advanced	Non-PC
H2T-A-1259	HU hydrogen corridor V HU/RO		60	Advanced	Non-PC
H2T-A-1291	Hynframed 1		GRīgaz	Advanced	Non-PC
H2T-A-1327	HySoW Atlantic (Hydrogen South West corridor of France)		€ Terēga	Advanced	Non-PC

	H2T-N-569	HY-FEN H2 Corridor Spain France Germany connection			SRIgaz	Less-Adv.	PCI
	H2T-N-738	Delta Rhine Corridor H2			OGE	Less-Adv.	PCI
	H2T-N-796	FLOW – making hydrogen happen (East)			SCADE	Less-Adv.	PCI
	H2T-N-884	CHE Pipeline			uinor 👯	Less-Adv.	PCI
	H2T-N-970	Dedicated H2 Pipeline			&	Less-Adv.	PCI
	H2T-N-991	AquaDuctus	fluxys [©]	GAS	CADE	Less-Adv.	PCI
	H2T-N-1122	Nordic-Baltic Hydrogen Corridor - EE section		elering		Less-Adv.	PCI
	H2T-N-1151	H2Med-BarMar	ogas (O) Te			Less-Adv.	PCI
	H2T-N-1239	Nordic-Baltic Hydrogen Corridor - LT section			Amber Grid	Less-Adv.	PCI
	H2T-N-1324	H2Med-CelZa (Enagas)			enagas	Less-Adv.	PCI
		HYDROGEN STORAGE FACILITIE	S (H2S)				
*	H2S-F-887	H2CAST		STOR	AG ETZEL rgy Storage Solutions	FID	Non-PCI
	H2S-F-1304	HyPSTER (1st phase)		sto	rengy	FID	Non-PCI
	H2S-A-508	H2 storage North-1		enagas		Advanced	PCI
	H2S-A-565	GeoH2		G	néthane	Advanced	PCI
	H2S-A-767	RWE H2 Storage expansion 2 Gronau-Epe		R	WE	Advanced	PCI
	H2S-A-1152	H2 storage North-2		enagas		Advanced	PCI
	H2S-A-1238	12S-A-1279 Hystock			RACE NUMBE	Advanced	PCI
	H2S-A-1279				Sume	Advanced	PCI
	H2S-A-1284				WE	Advanced	PCI
*	H2S-A-749 EWE Hydrogen Storage Huntorf			EWE		Advanced	Non-PCI
	H2S-A-761			SEFE		Advanced	Non-PCI
	H2S-A-802			RWE		Advanced	Non-PCI
	H2S-A-805	HENRI (H2I-S&D)		volta		Advanced	Non-PCI
	H2S-A-818	RWE H2 Storage expansion 1 Xanten		RWE		Advanced	Non-PCI
	H2S-A-839	Clean Hydrogen Coastline - Storage Huntorf			<u>''/':</u>	Advanced	Non-PCI
	H2S-A-1244	UST Hydrogen Storage Krummhörn		unl per		Advanced	Non-PCI
	H2S-A-1287	RWE H2 Storage expansion 1 Gronau-Epe		RWE		Advanced	Non-PCI
	H2S-A-1352	HySoW storage (Hydrogen South West corridor of Franc	e)	Terega		Advanced	Non-PCI
	H2S-N-934	SaltHy Harsefeld		storengy		Less-Adv.	PCI
		HYDROGEN RECEPTION FACILIT	TIES (H2L)				
	H2L-A-754	ACE Terminal	Gas u	nне	Ammonia	Advanced	PCI
*	H2L-A-665	Eemshaven H2	Ammon		Ammonia	Advanced	Non-PCI
	H2L-A-1041	Ammonia terminal in Gdansk			Ammonia	Advanced	Non-PCI
*	H2L-N-543	LH2.Rotterdam			Ammonia	Less-Adv.	PCI
	H2L-N-664	Antwerp NH3 Import Terminal			Ammonia	Less-Adv.	PCI
	H2L-N-820	Dunkerque New Molecules development	fluxys		Ammonia	Less-Adv.	PCI
	H2L-N-968	Green Wilhelmshaven Terminal/Storage/Cracker	uni per	uni per		Less-Adv.	PCI
	H2L-N-1099			RWE		Less-Adv.	PCI
	H2L-N-1100	Amplifhy Antwerp		\sim		Less-Adv.	PCI
	H2L-N-1127	Amplifhy Rotterdam			Ammonia	Less-Adv.	PCI
	H2L-N-1159	bp Wilhelmshaven Green Hydrogen Hub	- W		Less-Adv.	PCI	
	H2L-N-1325	Zeebrugge New Molecules development	fluxys	fluxys [©] Ammonia		Less-Adv.	PCI

Figure 2: Representation of the Advanced hydrogen infrastructure level.

4 INFRASTRUCTURE GAPS IDENTIFI-CATION (IGI) INDICATORS

The analysis is performed for 2030 and 2040 as simulation years for the TYNDP 2024 National Trends+ scenario. It covers both hydrogen infrastructure levels. Thereby, three indicators are used to identify regional hydrogen infrastructure gaps. IGI indicator 1 and IGI indicator 2.1 thereby use a reference weather year (i.e., 1995), while IGI indicator 2.2 uses a stressful weather year (i.e., 2009). The application of these IGI indicators is explained in the following paragraphs. Additional justifications and examples are available in section 5 of TYNDP 2024 Annex D2.

The IGI indicators identify the existence of an infrastructure gap through the existence of effects of such infrastructure gap. The non-identification of a certain infrastructure gap may be related to the infrastructure considered in the infrastructure levels of the energy sectors considered in the models. The effect of this infrastructure gap is either expressed at a border for IGI indicator 1 (see section 4.1) or at a country for IGI indicators 2.1 and 2.2 (see section 4.2 and section 4.3).

The reason for an infrastructure gap is an infrastructure bottleneck. An infrastructure bottleneck is a physical congestion of the network that can be observed based on full utilization rates of all relevant transmission infrastructure during certain periods of time. As a limited cooperation mode is used among countries in situations of hydrogen scarcity (see section 3.2.4 of the TYNDP 2024 Annex D1), the dominant infrastructure bottleneck is not necessarily located at a border of the country through which the IGI indicators demonstrated the existence of an infrastructure gap (see examples in section 5 of TYNDP 2024 Annex D2).

Also, besides the dominant bottleneck, non-dominant bottlenecks may exist at other locations that only unfold their effect once the dominant bottleneck is addressed. Additionally, an infrastructure bottleneck can in principle be solved by different projects and via different routes. Therefore, the infrastructure gaps identified by the IGI indicators identify regional infrastructure gaps, as the potential solution to it is not limited to the border of IGI indicator 1 or the country of IGI indicator 2. Potential solutions may in principle involve import projects, production projects, transmission projects, and storage projects.

4.1 IGI INDICATOR 1: HYDROGEN MARKET CLEARING PRICE SPREADS IN DHEM

This IGI indicator aims at identifying hydrogen infrastructure gaps by assessing Zone 2 nodes of different countries based on differences in hydrogen market clearing prices between these nodes. Zone 2 nodes are areas of hydrogen production and/or storage and/or consumption within a country that are considered to be connected to the national hydrogen backbone. The hydrogen market clearing price spread is thereby based on the hourly hydrogen market clearing prices in the DHEM simulations. It is calculated for each combination of simulation year and hydrogen infrastructure level.

The hydrogen prices and flows in the DHEM are linked to the merit order of hydrogen supply options as well as hydrogen demand associated with end users' willingness to pay for hydrogen (i.e., WTP $_{\rm H2}$ as defined in TYNDP 2024 Annex D1). The merit order of hydrogen production has the following elements:

- → Hydrogen imports have specific costs as defined in the TYNDP 2024 NT+ scenario;
- ✓ Electrolytic hydrogen production costs are linked to the price of the used electricity and the water price in the respective country as well as the process efficiency;
- Hydrogen production from natural gas within the EU is based on the TYNDP 2024 NT+ scenario and depends on the natural gas price, operating and maintenance costs, process efficiency, and Emissions Trading System (ETS) costs (thereby being differentiated between low-carbon and unabated hydrogen production from natural gas).

Especially the electrolytic hydrogen production thereby depends on the availability of RES and nuclear energy. Electrolysers that are connected to an electricity bidding zone or dedicated RES may be limited in their load factor by this availability. Also, the electricity price is subject to a merit order of electricity production as well as the end users' willingness to pay for electricity (e.g., VoLL). The electricity price is thereby influencing the cost of electrolytic hydrogen production.

As the DHEM aims at maximising the joint market rents in the electricity sector and in the hydrogen sector, it dispatches the European electricity and hydrogen supply options in an optimised way while respecting hard constraints like production and transport capacities. Thereby, the most expensive hydrogen supply source is usually defining the hydrogen market clearing price in a perfectly interconnected area. However, in case of hydrogen undersupply, the end users are competing for this supply up to their willingness to pay for hydrogen, thereby setting the hydrogen market clearing price at this level. From this dispatch of production options result hydrogen (and electricity) flows.

If countries are well connected, they share the same hydrogen market clearing price. If countries are not connected at all, the interdependency of their hydrogen market clearing prices is limited as these prices then depend on their own hydrogen supply options and hydrogen demand. A certain correlation may still be observed, e.g., due to one or several of the following reasons:

- The price and availability of electricity used for electrolytic hydrogen production may be correlated (e.g., due to similar weather conditions in these countries and/or sufficient cross-border capacity in the electricity system).
- ✓ The reliance on the same means of hydrogen production from natural gas may be correlated.
- ✓ The frequency of hydrogen demand curtailment may be correlated.

When countries are connected but the sum of connections between them is a bottleneck during certain periods of time, the hydrogen market clearing price is the same during periods of time when the interconnection is not acting as a bottleneck and is detached when the interconnection is acting as a bottleneck. Then, a limited price correlation can be observed. The less often the bottleneck is observed and the lower the resulting price spread during these periods of detachment is, the lower is the average price spread.

To define which hydrogen market clearing price spreads are a significant indication of a hydrogen infrastructure gap, one of the following thresholds must be passed:

Threshold 1: This refers to a hydrogen market clearing price difference. It is calculated as the yearly average of the absolute hourly price differences between two Zone 2 nodes. The threshold is exceeded if this average difference is greater than 4 €/MWh. Threshold 2: A hydrogen market clearing price spread as the absolute average daily hydrogen market clearing price spread between two Zone 2 nodes of different countries of more than 20 €/MWh for more than 40 days per year.

If there is a hydrogen market clearing price spread above one of the thresholds, this indicates an infrastructure gap for the given assumptions.

More details are provided by TYNDP 2024 Annex D1 and TYNDP 2024 Annex D2.

4.2 IGI INDICATOR 2.1: CURTAILED HYDROGEN DEMAND IN DHEM AND DGM FOR REFERENCE WEATHER YEAR

This IGI indicator identifies infrastructure gaps by measuring the hydrogen demand curtailments of individual nodes during the reference weather year (i.e., 1995), and without infrastructure or source disruptions. The following simulation logic is applied for each combination of simulation year and hydrogen infrastructure level:

- **1.** A DHEM simulation is run with the reference weather year data (i.e., the same simulation is used for IGI indicator 1).
- 2. Certain DHEM outputs from step 1 that influence the natural gas demand, hydrogen production, and hydrogen consumption are transferred into the DGM (see sections 2.4.5 and 2.4.6 of the TYNDP 2024 Annex D1).
- **3.** A DGM simulation is run on the basis of step 2.
- **4.** Per node, the combined hydrogen demand curtailment from the DHEM simulation and the additional hydrogen demand curtailment from the DGM are provided.

To define which hydrogen demand curtailments are a significant indication of a hydrogen infrastructure gap, the following threshold must be passed:

■ Threshold: A yearly average hydrogen demand curtailment rate of more than 0 %.

If there is a hydrogen demand curtailment above the threshold, this indicates an infrastructure gap for the given assumptions.

In this draft TYNDP 2024 IGI report, the IGI indicator 2.1 is only based on the hydrogen demand curtailment from the DHEM simulations.

4.3 IGI INDICATOR 2.2: CURTAILED HYDROGEN DEMAND IN DHEM AND DGM FOR STRESSFUL WEATHER YEAR

This IGI indicator identifies infrastructure gaps by measuring the hydrogen demand curtailments of individual nodes under stressful weather conditions (i.e., 2009).

The following simulation logic is applied for each combination of simulation year and hydrogen infrastructure level:

- **1.** A DHEM simulation is run with the stressful weather year data.
- 2. The DHEM outputs from step 1 that influence the natural gas demand, hydrogen production, and hydrogen consumption are transferred into the DGM (see sections 2.4.5 and 2.4.6 of the TYNDP 2024 Annex D1).
- **3.** A DGM simulation is run on the basis of step 2.
- **4.** Per node, the combined hydrogen demand curtailment from the DHEM simulation and the additional hydrogen demand curtailment from the DGM are provided.

To define which hydrogen demand curtailments are a significant indication of a hydrogen infrastructure gap, one of the following thresholds must be passed:

- ▲ Threshold 1: A yearly average hydrogen demand curtailment rate of more than 3 %.
- Threshold 2: A hydrogen demand curtailment rate of more than 5 % for at least one calendar month per year.

If there is a hydrogen demand curtailment above one of the thresholds, this indicates an infrastructure gap for the given assumptions.

In this draft TYNDP 2024 IGI report, the IGI indicator 2.2 is only based on the hydrogen demand curtailment from the DHEM simulations.

5 DISCLAIMERS

The results of the TYNDP 2024 IGI report are only related to infrastructure gaps that are based on the considered infrastructure levels. Therefore, the TYNDP 2024 IGI report cannot find that an infrastructure that is part of the smallest considered infrastructure level (i.e., the PCI/PMI hydrogen infrastructure level) is not addressing any infrastructure gap. Therefore, all the projects constituting the PCI/PMI hydrogen infrastructure level are to be treated as equally and jointly necessary for addressing the infrastructure gaps considered in the analysis.

The results of the TYNDP 2024 IGI report are related to the assessed scenario (i.e., NT+) and years (i.e., 2030 and 2040).

The lines depicted in the grid flow maps are derived from simulations used to identify infrastructure gaps within the assessed infrastructure levels and assessed years. These indicative lines do not reflect ENTSOG's expectations on how the European network will evolve during the simulated years. The report's primary objective is to identify gaps, not to predict the development of European infrastructure neither the future flows. Additionally, many projects included in the TYNDP are not part of the analysed infrastructure levels.

Their commissioning could complement network flows compared to those presented in the report and potentially address some of the identified infrastructure gaps.

The term "bottleneck" in this report refers to situations where two conditions are met: (1) the capacity is being utilized to its maximum potential, and (2) no alternative routes are available. When a capacity is identified as a bottleneck, it signals the need for potential enhancements to that capacity at the specific fully utilized route and/or the development of new projects following other interconnections.

No generic hydrogen infrastructure projects are used in this TYNDP 2024 IGI report. Instead, only real projects that were submitted by project promoters are considered.

The representation of grid flows in the maps of this report is based on a schematic representation from capital to capital.

All values that refer to the energy content of molecules (e.g., GWh/d, €/MWh or TWh/y) are stated in terms of their Gross Calorific Value (GCV) in this IGI report. For hydrogen, the conversion factor from NCV to GCV is 1.176.

6 ASSESSMENT FOR 2030

This section describes the evolution of the IGI indicators for the reference weather year (i.e., 1995) and the stressful weather year (i.e., 2009) for the analysed infrastructure levels (i.e., PCI/PMI and Advanced hydrogen infrastructure levels) for the simulation year 2030.

6.1 INFRASTRUCTURE GAPS IDENTIFICATION

In 2030, the PCI/PMI hydrogen infrastructure level's extra-EU imports are limited to shipped imports through the PCI reception terminals in Belgium, Germany and the Netherlands. The overall contribution of shipped hydrogen imports are rather limited when compared to the overall EU hydrogen demand. Therefore, in this infrastructure level, European hydrogen demand is mostly met by indigenous production through electrolysis or hydrogen

production using natural gas which are not enough to fully cover the hydrogen demand. Therefore, curtailed hydrogen demand is significant.

In 2030, in the Advanced hydrogen infrastructure level, Europe will receive imports also from North Africa contributing to the reduction of hydrogen demand curtailment via higher utilisation rates of interconnected supply corridors.

6.1.1 ASSESSMENT OF PCI/PMI HYDROGEN INFRASTRUCTURE LEVEL

High-level results for reference weather year

The overall yearly supply-demand balance for the PCI/PMI hydrogen infrastructure level in 2030 for the reference weather year is presented in Table 7. As detailed in Table 7, electrolytic hydrogen pro-

duction is the main source of hydrogen in Europe. This assessment results in an approximate share of 8.3 % of hydrogen demand curtailment in Europe.

Yearly hydrogen supply-demand balance	PCI/PMI IL		
H ₂ produced via electrolysis	310		
H ₂ produced using natural gas	229		
H ₂ shipped imports	29		
H ₂ pipeline imports	0		
Curtailed H ₂ demand	52		
H ₂ demand for power production	2		
Total H ₂ demand	620		

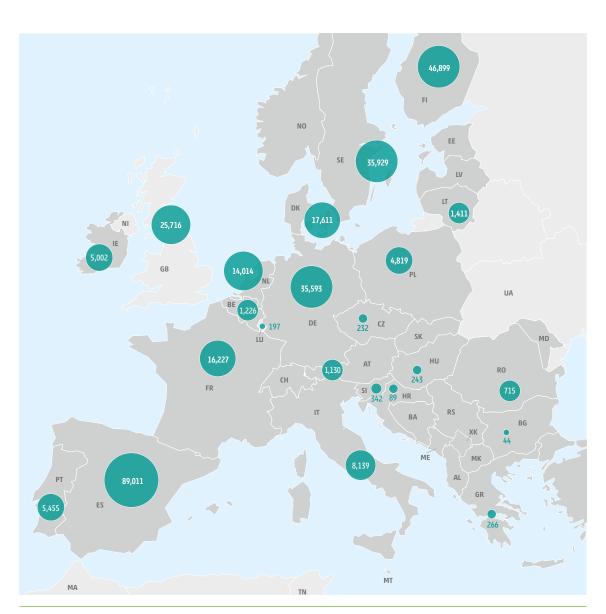
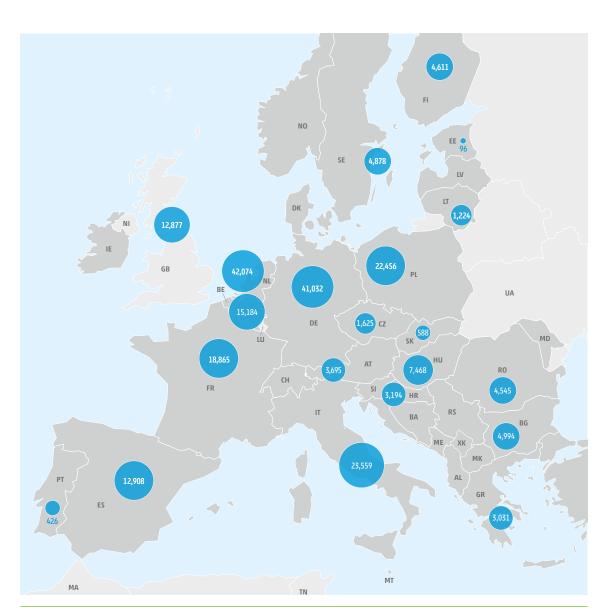

Table 7: Supply and demand balance in the PCI/PMI hydrogen infrastructure level in 2030 for reference weather year (unit: TWh/y).

Figure 3 shows the hydrogen production via electrolysis in the different European countries for the PCI/PMI hydrogen infrastructure level in the 2030 assessment. The countries with highest electrolytic hydrogen production are Spain, Finland, Sweden, and Germany. Some countries have more than one source of electrolytic hydrogen production.


This is related to the intra-country assumptions, which can be summarized as it follows:

Consideration of electrolytic hydrogen production from dedicated RES in Spain.

- Consideration of dedicated electrolytic production to satisfy regional hydrogen demand within the country (i.e., Zone 1). This is the case for Austria, Spain, Finland, Croatia, Ireland, Sweden, Slovenia, and the United Kingdom.
- Consideration of multiple production subzones within the main system of a country to reflect different geographical production areas and/or demand areas and/or storage areas stemming from internal transport bottlenecks. This is the case for Denmark, Italy, France, Finland, Sweden, and the United Kingdom.

Figure 3: Distribution of hydrogen production via electrolysis in the PCI/PMI hydrogen infrastructure level in 2030 for reference weather year (unit: GWh/y).

Figure 4: Distribution of hydrogen production from natural gas in the PCI/PMI hydrogen infrastructure level in 2030 for reference weather year (unit: GWh/y).

Country	H ₂ Production via electrolysis	H ₂ Production using natural gas	H ₂ extra-EU imports by pipeline & ship	H ₂ demand
AT	1,130	3,695	0	10,901
BE	1,226	15,184	9,793	30,970
BG	40	4,994	0	3,768
CZ	232	1,625	0	6,849
CY	0	0	0	329
DE	35,593	41,032	5,255	154,829
DK	17,611	0	0	13,241
EE	0	96	0	540
ES	89,011	12,908	0	61,128
FI	46,899	4,611	0	34,184
FR	16,227	18,865	0	47,735
GR	266	3,031	0	6,482
HR	89	3,194	0	3,283
HU	243	7,467	0	9,312
IE	5,002	0	0	6,222
IT	8,139	23,559	0	26,504
LT	1,411	1,224	0	3,977
LU	197	0	0	2,695
LV	0	0	0	997
MT	0	0	0	284
NL	14,014	42,074	13,943	59,194
PL	4,819	22,456	0	52,416
PT	5,455	426	0	2,922
RO	715	4,545	0	12,359
SE	35,929	4,878	0	23,107
SI	342	0	0	1,544
SK	0	588	0	2,767
UK	25,716	12,877	0	41,537

Table 8: Distribution of hydrogen production, demand and hydrogen imports per country in the PCI/PMI hydrogen infrastructure level in 2030 for reference weather year (unit: GWh/y).

Intra-EU cross-border flows emerge between different European countries due to limitations of available supplies and associated costs. Figure 5 shows these flows.

Two main transport corridors emerge in the PCI/PMI hydrogen infrastructure level in the 2030 assessment, one from the Iberian Peninsula towards Germany through France and one from Nordic countries to Germany.

This result is explained by the fact that these corridors are connecting countries with high availability of supply with other countries where hydrogen supplies might be limited or more expensive.

In addition, among the interconnected countries within the PCI/PMI hydrogen infrastructure level, Germany shows the highest demand and at the same time enables transport of supply to its neighbouring countries, acting as a hydrogen hub.

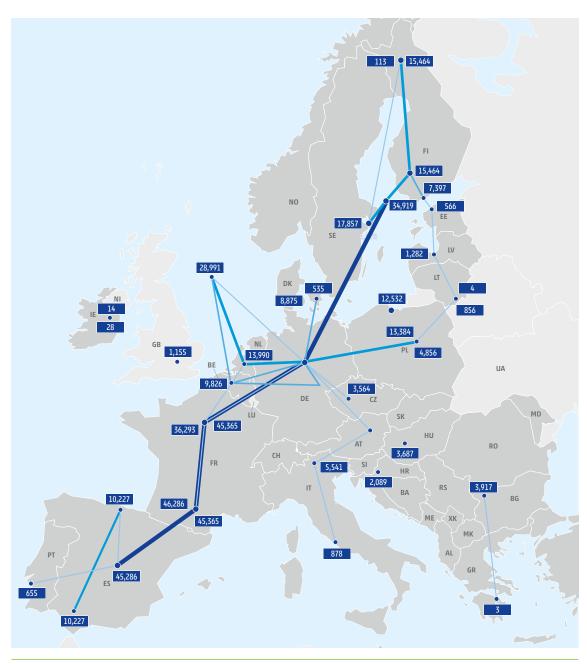


Figure 5: Grid flows* in the PCI/PMI hydrogen infrastructure level in 2030 for reference weather year (unit: GWh/y).

^{*} Grid flows refer to simulations results and do not intend to represent how the European infrastructure is expected to evolve in the simulated years, being just outcomes of a modelling tool. The values are provided as a table in Annex II and as monthly values in Annex III.

In the 2030 PCI/PMI hydrogen infrastructure level assessment for the reference weather year, countries can be grouped in four different categories according to their supply-demand balance on a yearly basis:

- 1. Countries that export more than they import: Sweden, Finland, Denmark, Italy, Spain, Portugal and Bulgaria.
- **2. Countries that import more than they export:** Belgium, Poland, Czechia, Greece, Lithuania.
- 3. Transit countries that import more than they consume: Germany, Austria, France, Belgium, The Netherlands, Estonia, Latvia and Lithuania.

4. Isolated countries: the United Kingdom, Ireland, Luxembourg, Hungary, Romania, Slovakia, Slovenia, Croatia, Malta, Cyprus, Switzerland⁸ and the cluster Bulgaria-Greece.

While on a yearly basis some countries are net exporters and some countries are net importers, net exporters may be relying on net imports during certain shorter periods of time and net importers may be providing net exports during certain shorter periods of time. This can result in bidirectional flows at interconnections. This situation is caused by the seasonality of electrolytic hydrogen production and to some extent by the seasonality of hydrogen demand

High-level results for stressful weather year

The overall yearly supply-demand balance for the PCI/PMI hydrogen infrastructure level in 2030 for the stressful weather year is presented in Table 9. As detailed in Table 9, electrolytic hydrogen production is the main source of hydrogen in Europe but it is reduced in comparison with the reference

weather year. This assessment results in an approximate share of 11.1 % of curtailed hydrogen demand at European level. This represents an increase by 3 percentage points in comparison with the reference weather year.

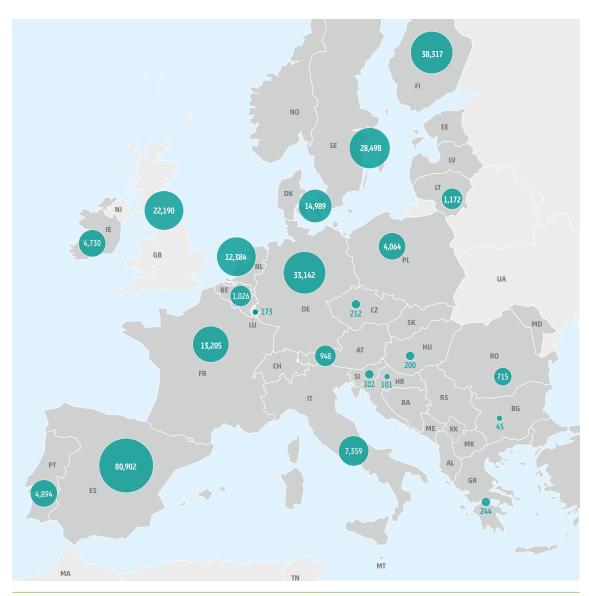
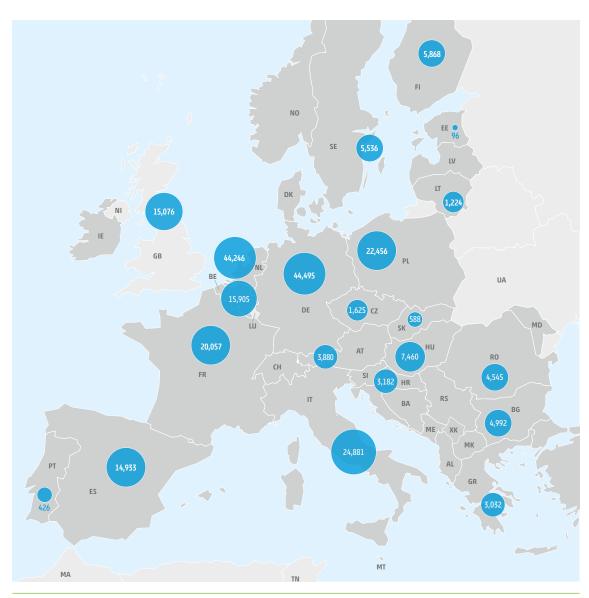

Yearly hydrogen supply-demand balance	PCI/PMI IL		
H ₂ produced via electrolysis	270		
H ₂ produced using natural gas	245		
H ₂ shipped imports	36		
H ₂ pipeline imports	0		
Curtailed H ₂ demand	69		
H ₂ demand for power production	2		
Total H ₂ demand	619		

Table 9: Supply and demand balance in the PCI/PMI hydrogen infrastructure level in 2030 for stressful weather year (unit: TWh/y).


Figure 6 shows the hydrogen production via electrolysis in the different European countries for the PCI/PMI hydrogen infrastructure level in the 2030 assessment. The countries with highest electrolytic hydrogen production are Spain, Finland, Sweden, and Germany.

Some countries have more than one source of electrolytic hydrogen production. This is related to the intra-country assumptions, which is explained in section 6.1.1.

⁸ IGI report does not consider hydrogen demand in Switzerland (based on TYNDP 2024 Draft Scenario report). However, there is no hydrogen infrastructure connecting Switzerland to any of its European neighbouring countries in the assessed infrastructure levels.

Figure 6: Distribution of hydrogen production via electrolysis in the PCI/PMI hydrogen infrastructure level in 2030 for stressful weather year (unit: GWh/y).

Figure 7: Distribution of hydrogen production from natural gas in the PCI/PMI hydrogen infrastructure level in 2030 for stressful weather year (unit: GWh/y).

Country	H ₂ Production via electrolysis	H ₂ Production using natural gas	H ₂ extra-EU imports by pipeline & ship	H ₂ demand
AT	948	3,880	0	10,901
BE	1,026	15,905	12,226	30,970
BG	45	4,992	0	3,768
СН	0	0	0	0
CZ	212	1,625	0	6,849
CY	0	0	0	329
DE	33,142	44,495	6,548	154,501
DK	14,989	0	0	13,241
EE	0	96	0	540
ES	80,902	14,933	0	61,128
FI	38,317	5,868	0	34,184
FR	13,205	20,057	0	47,735
GR	244	3,032	0	6,482
HR	101	3,182	0	3,283
HU	200	7,460	0	9,312
IE	4,730	0	0	6,222
IT	7,359	24,881	0	26,504
LT	1,172	1,224	0	3,977
LU	173	0	0	2,695
LV	0	0	0	997
MT	0	0	0	284
NL	12,384	44,246	17,859	59,020
PL	4,064	22,456	0	52,271
PT	4,894	426	0	2,922
RO	672	4,545	0	12,359
SE	28,498	5,536	0	23,107
SI	302	0	0	1,544
SK	0	588	0	2,767
UK	22,190	15,076	0	41,537

Table 10: Distribution of hydrogen production per country in the PCI/PMI hydrogen infrastructure level in 2030 for stressful weather year (unit: GWh/y).

Intra-European cross-border flows emerge between different European countries due to limitations of available supplies and associated costs. Figure 8 shows resulting yearly average flows under stressful weather conditions.

In comparison with the reference weather year, the export from countries that to a large extent base their hydrogen production on RES is reduced. This reduces the usage of the Iberian and of the

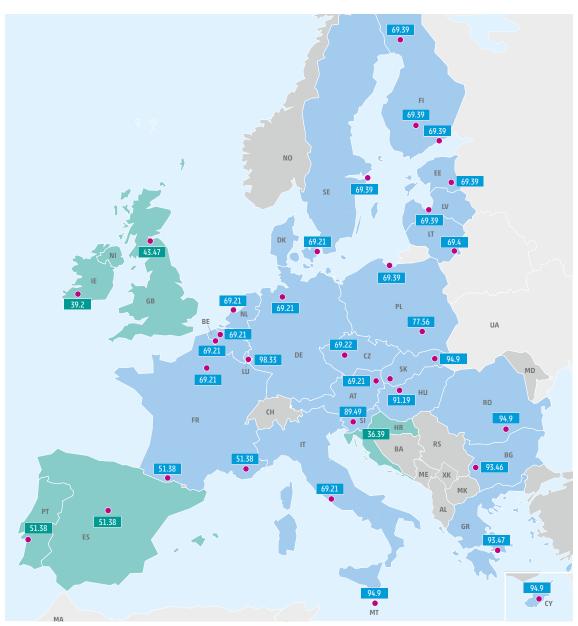
Nordic corridor. At the same time, the import terminals must be used to a higher extent, increasing exports of countries and regions with such terminals. Germany maintains its role as hydrogen hub. Despite the overall reduction of electrolytic hydrogen production, under stressful weather conditions the countries with the highest electrolytic hydrogen production follow the same distribution as in the PCI/PMI hydrogen infrastructure level in 2030 for the reference weather year.

Figure 8: Grid flows* in the PCI/PMI hydrogen infrastructure level in 2030 for stressful weather year (unit: GWh/y).

* Grid flows refer to simulations results and don't intend to represent how the European infrastructure is expected to evolve in the simulated years, being just outcomes of a modelling tool. The values are provided as a table in Annex II and as monthly values in Annex III).

In the 2030 PCI/PMI hydrogen infrastructure level assessment for the stressful weather year, countries can be grouped in four different categories according to their supply-demand balance on a yearly basis:

- Countries that export more than they import: Sweden, Finland, Denmark, Italy, Spain, Portugal.
- **2. Countries that import more than they export:** Poland, Czechia, Greece, Lithuania.
- 3. Transit countries that import more than they consume: Germany, Austria, France, Belgium, The Netherlands, Estonia, Latvia, and Lithuania.
- **4. Isolated countries:** the United Kingdom, Ireland, Luxembourg, Hungary, Romania, Slovakia, Slovenia, Croatia, Malta, Cyprus, Switzerland⁹ and the cluster Bulgaria-Greece.


⁹ IGI report does not consider hydrogen demand in Switzerland (based on TYNDP 2024 Draft Scenario report). However, there is no hydrogen infrastructure connecting Switzerland to any of its European neighbouring countries in the assessed infrastructure levels.

While on a yearly basis some countries are net exporters and some countries are net importers, net exporters may be relying on net imports during certain shorter periods of time and net importers may be providing net exports during certain shorter

periods of time. This can result in bidirectional flows at interconnections. This situation is caused by the seasonality of electrolytic hydrogen production and to some extent by the seasonality of hydrogen demand.

6.1.1.1 IGI INDICATOR 1: HYDROGEN MARKET CLEARING PRICE SPREADS FOR REFERENCE WEATHER YEAR

Overview: Hydrogen market clearing prices per country

Figure 9: Average of the hourly hydrogen market clearing prices per country in the PCI/PMI hydrogen infrastructure level in 2030 (unit: €/MWh).

The price formation in the DHEM is based on the merit order of hydrogen production (see section 4.1). Several price groups stand out, while a signification correlation is understood here as a correlation above 0.7:

- 1. Portugal, Spain, France-South region: Portugal and Spain are producers and net exporters of electrolytic hydrogen from RES to other countries. While the France-South region is sufficiently connected to the Iberian Peninsula, price spreads appear with other groups of countries due to an internal bottleneck in France. The prices in this group show a significant correlation with the prices in groups 2, 3 and 4.
- **2. France-Southwest region:** Local undersupply and isolated from other French regions. The prices in this group show significant correlations with prices in groups 1, 3 and 4.
- 3. Belgium, the Netherlands, Denmark, Germany, Czechia, Austria, Italy: Well interconnected countries that as group have own import terminals and national hydrogen production and are in the centre of two main supply corridors. The prices in this group show a nearly perfect correlation with the prices in group 4 and a significant correlation with the prices in groups 1 and 2.

- 4. Sweden, Finland, Estonia, Latvia and Lithuania: Composed of net exporting countries Sweden and Finland as well as countries that are well interconnected without bottlenecks. The prices are very similar to the prices in group 3 as the bottlenecks between the two groups play a minor role. The prices in this group show a nearly perfect correlation with the prices in group 3 and a significant correlation with the prices in groups 1 and 2.
- 5. Ireland, the United Kingdom, Croatia, Poland-South region: Isolated (regions of) countries without significant price correlations but with average prices below 100 €/MWh.
- **6. Greece, Bulgaria:** Countries showing significant price correlation, jointly isolated from the other European countries.
- 7. Slovenia, Hungary, Romania, Luxembourg, Cyprus, Slovakia, Malta: Isolated countries without significant price correlations (except for Hungary and Slovenia due to a similar national hydrogen production constellation) and with average prices above 100 €/MWh.

The price correlations listed above are enabled by the infrastructure projects already considered in this hydrogen infrastructure level. However, price differences that led to the identification of the groups listed above are not necessarily describing an infrastructure gap. For this identification of infrastructure gaps, the thresholds of IGI indicator 1 are used.

Hydrogen market clearing price spreads

If one of the two thresholds of IGI indicator 1 is passed, a regional hydrogen infrastructure gap is assumed to be identified (see section 4.1). Table 11 lists the borders for which Threshold 1

and/or Threshold 2 were passed. In this case, both thresholds were always passed at the same borders.

Border	Threshold 1: Absolute average hourly hydrogen market clearing price spread above 4 €/MWh (number of days)	Threshold 2: More than 40 days with hydrogen market clearing price spread above 20 €/MWh (number of days)
DEh ₂ -PLh ₂ S	26	169
FRh ₂ -FRh ₂ S	26	168
FRh ₂ -FRh ₂ SW	12	66
FRh ₂ S-FRh ₂ SW	19	99
HUh ₂ -ATh ₂	32	233
HUh ₂ -HRh ₂	80	365
HUh ₂ -ROh ₂	5	43
HUh ₂ -SKh ₂ E	5	43
ITh ₂ -HRh ₂	50	293
NLh ₂ -UKh ₂	42	228
PLh ₂ N-PLh ₂ S	25	167
PLh ₂ S-CZh ₂	26	169
PLh ₂ S-SKh ₂ E	25	143
SIh ₂ -HRh ₂	78	364
SKh ₂ E-PLh ₂ S	25	143
SKh ₂ W-ATh ₂	38	266
SKh ₂ W-CZh ₂	38	266
UKh ₂ -BEh ₂	42	228
UKh ₂ -IEh ₂	19	111

Table 11: List of borders in the PCI/PMI hydrogen infrastructure level that exceed (at least one of) the thresholds defined for IGI indicator 1 in 2030 (unit: days).

6.1.1.2 IGI INDICATOR 2.1: HYDROGEN DEMAND CURTAILMENT FOR REFERENCE WEATHER YEAR

As explained in section 4.2, this IGI indicator assesses infrastructure gaps by quantifying hydrogen demand curtailments at individual nodes during the reference weather year, assuming no disruptions of infrastructures or of supply sources. It involves a multi-step simulation process integrating DHEM and DGM¹⁰ outputs to evaluate the combined curtailments across nodes. The assessment is performed for the PCI/PMI hydrogen infrastructure level in 2030.

Figure 10 and Table 12 show yearly average curtailment rates of hydrogen demand in the Zone 2 nodes of different European countries. For countries where the hydrogen market is divided into several sub-zones (i.e., nodes), the curtailment rate in the different sub-zones is presented. The yearly average hydrogen curtailment rates are thereby colour-coded in the map to indicate levels relative to the set threshold: blue signifies curtailment above the threshold, while green represents rates that are not above it.

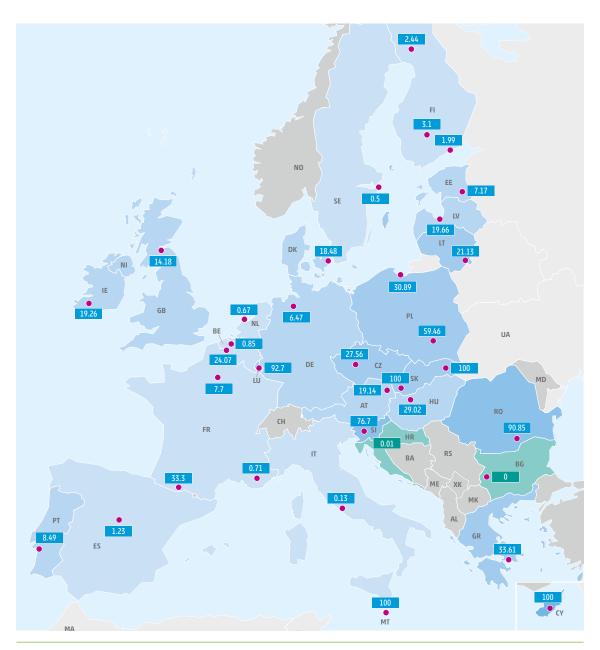


Figure 10: Yearly average hydrogen demand curtailment rate at country/sub-zone level in the PCI/PMI hydrogen infrastructure level in 2030 for reference weather year (unit: %).

 $^{10\,}$ This draft TYNDP 2024 IGI report only includes the simulation results of the DHEM.

H ₂ Demand Zone	Yearly average curtailment rate (%)	Threshold passed
ATh ₂	19.1	YES
BEh ₂	0.9	YES
BEh ₂ Mo	24.1	YES
BGh ₂	0.0	NO
CYh ₂	100.0	YES
CZh ₂	27.6	YES
DEh ₂	6.5	YES
DKh ₂	18.5	YES
EEh ₂	7.2	YES
ESh ₂	1.2	YES
Flh ₂	3.1	YES
Flh₂N	2.4	YES
FIH ₂ S	2.0	YES
FRh ₂	7.7	YES
FRh ₂ S	0.7	YES
FRh ₂ SW	33.3	YES
GRh ₂	33.6	YES
HRh ₂	0.0	NO
HUh ₂	29.0	YES
IEh ₂	19.3	YES
ITh ₂	0.1	YES
LTh ₂	21.1	YES
LUh ₂	92.7	YES
LVh ₂	19.7	YES
MTh ₂	100.0	YES
NLh ₂	0.7	YES
PLh ₂ N	30.9	YES
PLh ₂ S	59.5	YES
PTh ₂	8.5	YES
ROh ₂	90.9	YES
SEh ₂	0.5	YES
SIh ₂	76.7	YES
SKh ₂ E	100.0	YES
SKh ₂ W	100.0	YES
UKh ₂	14.2	YES

Table 12: Yearly average hydrogen demand curtailment rate at country/sub-zone level in the PCI/PMI hydrogen infrastructure level in 2030 for reference weather year and check of the threshold of IGI indicator 2.1 (unit: %).

In the 2030 assessment of the PCI/PMI hydrogen infrastructure level, hydrogen demand is curtailed all over Europe. However, differences in the hydrogen curtailment rates between nodes are related to the level of infrastructure development and supply availability.

As explained in the description of the PCI/PMI hydrogen infrastructure level (see section 3 and Figure 1), with limited availability of extra-EU supplies, hydrogen demand is satisfied mainly with electrolytic hydrogen production and hydrogen production from natural gas.

Countries with higher availability of supply from those sources or from imports show lower curtailment rates. Only Bulgaria and Croatia hydrogen demand is completely undisrupted and the hydrogen demand curtailment in Italy is very low. All other countries including strong net exporters face (weather-induced) disruptions. In comparison with IGI indicator 1, this IGI indicator focusses on the availability of supplies.

As detailed in Figure 11, (regions of) countries can be aggregated in six different groups according to their average yearly hydrogen demand curtailment rates:

- 1. Rates below 0.1 %: Bulgaria, Croatia.
- 2. Rates between 0.1 % and 5 %: Italy, Belgium, Finland, France-South region, the Netherlands, Spain, Sweden.
- 3. Rates between 5 % and 20 %: France, Austria, Denmark, Estonia, Germany, Ireland, Latvia, Portugal, the United Kingdom.
- **4. Rates between 20 % and 50 %:** Belgium-Mons region, Czechia, France-Southwest region, Hungary, Lithuania, Poland-North region, Greece.
- **5. Rates between 50 % and 100 %:** Slovenia, Romania, Poland-South region, Luxembourg.
- Full curtailment of 100 %: Slovakia, Cyprus, Malta

Without the infrastructure already considered in the hydrogen infrastructure level, the overall hydrogen demand curtailment would be higher.

All countries of group 1 have high shares of hydrogen produced from natural gas to cover national demand.

Among the countries of group 2, Spain, Sweden and Finland receive a significant share of their supply from national electrolytic hydrogen production, while Belgium, and the Netherlands, have access to extra-EU import capacities. The France-South region benefits from potential supplies from the Iberian Peninsula but also from other parts of France. At the same time, while the average demand curtailment is comparably low, all relevant nodes at certain hours of the year hit very high curtailment rates between 84 % in Spain, 89 % in Germany, and 100 % in the other nodes.

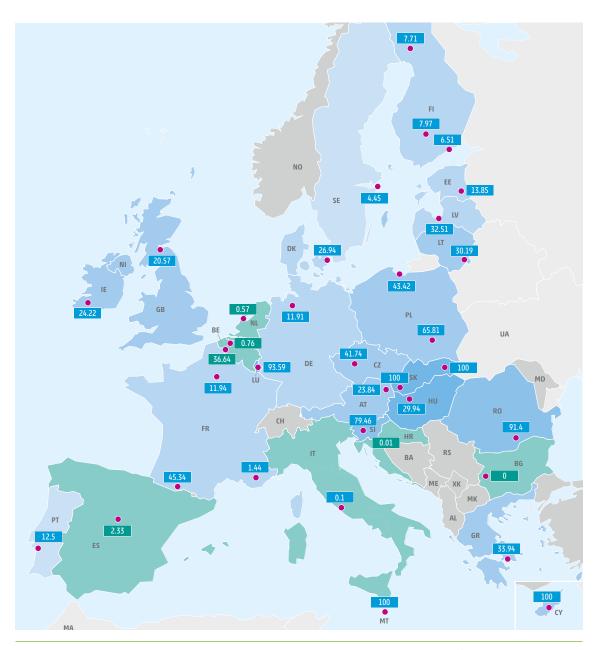
Among the countries of group 3, some countries like Denmark, Portugal, the United Kingdom and Ireland, despite having significant electrolytic hydrogen production compared to the national demand, still cannot cover all demand when RES are not available. In the case of Denmark and Portugal, being peripheric countries, their neighbouring countries (i.e., Germany and Spain) can help to mitigate demand curtailment, whereas in the case of the United Kingdom and Ireland, being isolated from Europe leads to higher curtailment rates. Among the countries of group 3, some countries such as Austria, Estonia, Germany and Latvia, despite being well interconnected, show demand curtailment mainly due to the limited availability of supplies for the EU in general that are then rather consumed closer to the location of production or import. For France, different curtailment rates are observed between the different hydrogen nodes. The France-Southwest region is the area with higher curtailment (i.e., 33.3 %) as it is isolated and strictly depends on local production. Between the other two demand nodes in France (i.e., France and France-South regions) there is 7 % of difference in the demand curtailment due to privileged access of the France-South region to supply from the Iberian Peninsula.

Among the countries of group 4, some countries like Czechia and Lithuania show high curtailment rates (i.e., 27.6 % and 21.1 %), despite being connected to Germany, in case of Czechia and other Baltic Sea countries, in case of Lithuania. This is because both countries need significant imports from their neighbouring countries to satisfy demand while the neighbouring countries at certain periods of time do not have access to surplus supplies for export. In addition, national production in Lithuania represents a higher share of the demand in comparison with the Czech Republic. Greece shows a curtailment rate of 33.3 %, which can be explained by the fact that despite being interconnected with Bulgaria, both countries are isolated from the rest of Europe (see section 3 and Figure 1). Lastly, the Belgium-Mons region is designed to be an individual cluster only connected to France (Valenciennes production cluster) and not interconnected to the remaining Belgian grid in the PCI/PMI hydrogen infrastructure level in 2030. Due to this isolated situation, curtailment is significantly higher (i.e., 24.1%) than in the rest of the country (i.e., 0.9%).

Group 5 includes countries with very high curtailment rates of up to nearly 100 %. All the countries in this group are fully isolated and rely on national hydrogen supplies, mainly produced from natural gas. This is also the case for the Poland-South region that shows a curtailment rate of almost 60 %, whereas the Poland-North region has a curtailment rate of around 31 % due to higher hydrogen generation in that region.

Group 6 includes only isolated countries that have hydrogen demand but no national hydrogen production assets connected to Zone 2.

In Denmark, Finland, Ireland, Sweden, and Slovenia, on top of the hydrogen demand curtailments observed in Zone 2 nodes as described in the paragraphs above, hydrogen demand curtailments can be observed in Zone 1. While these curtailments are limited to a few months in Sweden and Finland, it is of relevance in every month in Ireland and reaches up to 86 % in December in Denmark and up to 96 % in December in Slovenia.



6.1.1.3 IGI INDICATOR 2.2: HYDROGEN DEMAND CURTAILMENT FOR STRESSFUL WEATHER YEAR

Threshold 1: Average yearly hydrogen demand curtailment rate above 3 %

Figure 11 and Table 13 show the yearly average hydrogen demand curtailment rates in the Zone 2 nodes of various European countries for 2030, simulated under a stressful weather year. This weather scenario assumes adverse conditions, such as reduced wind and solar energy availability, which directly impacts hydrogen production. For countries with hydrogen markets divided into mul-

tiple sub-zones (i.e., nodes), curtailment rates are depicted individually for each sub-zone on the map. The yearly average hydrogen curtailment rates are thereby colour-coded to indicate levels relative to the set threshold 1: blue signifies curtailment above the threshold, while green represents rates that are not.

Figure 11: Yearly average hydrogen demand curtailment rate at country or node level in the PCI/PMI hydrogen infrastructure level in 2030 for stressful weather year (unit: %).

Country Node	Average yearly hydrogen demand curtailment (%)	Threshold 1 passed?	
ATh ₂	23.84	YES	
BEh ₂	0.76	NO	
BEH₂Mo	36.64	YES	
BGh ₂	0	NO	
CYh ₂	100	YES	
CZh ₂	41.74	YES	
DEh ₂	11.91	YES	
DKh ₂	26.94	YES	
EEh ₂	13.85	YES	
ESh ₂	2.33	NO	
Flh ₂	7.97	YES	
Flh ₂ N	7.71	YES	
Flh ₂ S	6.51	YES	
FRh ₂	11.94	YES	
FRh ₂ S	1.44	NO	
FRh ₂ SW	45.34	YES	
GRh ₂	33.94	YES	
HRh ₂	0.01	NO	
HUh ₂	29.94	YES	
IEh ₂	24.22	YES	
ITh ₂	0.1	NO	
LTh ₂	30.19	YES	
LUh ₂	93.59	YES	
LVh ₂	32.51	YES	
MTh ₂	100	YES	
NLh ₂	0.57	NO	
PLh ₂ N	43.21	YES	
PLh ₂ S	65.81	YES	
PTh ₂	12.5	YES	
ROh ₂	91.4	YES	
SEh ₂	4.45	YES	
Slh ₂	79.46	YES	
SKh ₂ E	100	YES	
SKh ₂ W	100	YES	
UKh ₂	20.57	YES	

Table 13: Yearly average hydrogen demand curtailment rate at country/sub-zone level in the PCI/PMI hydrogen infrastructure level in 2030 for stressful weather year and check of threshold 1 of IGI indicator 2.2 (unit: %).

As detailed in Figure 11, countries can be aggregated in different groups according to their average yearly hydrogen demand curtailment rates:

- 1. Rates below 3 %: France-South region, Spain, the Netherlands, Croatia, Italy, Belgium, Bulgaria.
- 2. Rates between 3 % and 20 %: Sweden, Portugal, France, France-North region, Finland, Estonia, Germany.
- 3. Rates above 20 % and below 50 %: Belgium-Mons, Latvia, Lithuania, Ireland, Hungary, Greece, Denmark, Czechia, Austria, Poland North.
- **4. Rates above 50 % and below 100 %:** Slovenia, Romania, Poland South, Luxembourg.
- **5. Full curtailment of 100 %:** Slovakia, Cyprus, Malta.

Based on Table 13, the countries that have a yearly average hydrogen demand curtailment rate below 3 % in the stressful weather year are Spain, France-South region, the Netherlands, Croatia, Italy, Belgium, and Bulgaria.

The second group of countries includes Sweden, Portugal, France, the France-North region, Finland, Estonia, and Germany. These nations exhibit demand curtailment rates exceeding the defined threshold 1 but remaining at or below 20 %. This trend can be attributed to the composition of the composition of their hydrogen production means. For instance, Sweden, with a demand curtailment rate of 4.95 %, leverages a substantial share of wind and hydropower, ensuring greater stability in its hydrogen supply. Finland is comparable to Sweden, while France demonstrates a 12 % demand curtailment rate, where its reliance on nuclear energy mitigates dependence on fluctuating climatic conditions, enhancing supply availability. Germany benefits from its proximity to multiple supply options as it is in the centre of the Iberian and the Nordic corridor, has own import terminals, and has access to terminals in neighbouring countries.

The third group encompasses Belgium-Mons, Latvia, Lithuania, Ireland, Hungary, Greece, Denmark, Czechia, and Austria. This cohort includes

countries like Greece (33.94%) and Denmark (26.94%) alongside others such as Czechia and Ireland, which face challenges stemming from their relative isolation within the hydrogen production and distribution topology. Geographic and infrastructural isolation increases reliance on domestically produced hydrogen, particularly from RES. Furthermore, dependency on imports from a single connected country—similarly affected by climatic stress—limits the availability of external hydrogen supplies. In such cases, countries prioritize domestic needs over exports, further constraining the import options for these isolated or peripheric regions.

The fourth group contains Slovenia, Romania, Poland and Luxembourg that show annual average hydrogen demand curtailment rates that exceed 50 % but remain below 100 % under the stressful weather year. The high curtailment rate observed in Luxembourg can be primarily attributed to the absence of interconnections with the neighbouring countries in the PCI/PMI hydrogen infrastructure level in combination with low national hydrogen production options. In Poland, which is divided into a northern region and a southern region, the southern region experiences notably higher curtailment rates under the stressful weather year due to lower hydrogen generation in the Poland-South region than in the Poland-North region. This disparity arises also due to a lack of sufficient PCI infrastructure which, combined with intensified weather impacts, significantly limits the ability to meet hydrogen demand. Romania and Slovenia also encounter substantial curtailments. In both countries, limited infrastructure in the PCI/PMI hydrogen infrastructure level in 2030 results in considerable hydrogen demand curtailment, regardless of weather variability. Consequently, while weather conditions play a role, they are not the primary factor in the persistently high curtailment rates observed in these countries.

Full demand curtailment under the stressful weather year has been identified for Slovakia, Malta and Cyprus, as has been the case for the reference weather year. These countries are fully isolated in the PCI/PMI hydrogen infrastructure level in 2030 and have no national hydrogen production assets connected to Zone 2.

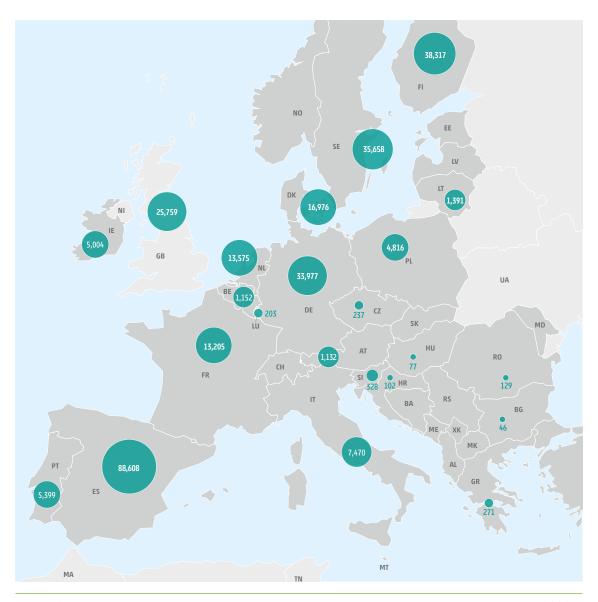
Threshold 2: hydrogen demand curtailment rate of more than 5 % for at least one month per year

All the countries and regions that exceed threshold 1 also exceeded threshold 2.

6.1.2 ASSESSMENT OF ADVANCED HYDROGEN INFRASTRUCTURE LEVEL

High-level results for reference weather year

In 2030, compared to the PCI/PMI hydrogen infrastructure level, the advanced infrastructure level considers several new infrastructures (see section 3.2): Besides a connection between Algeria and Italy, Slovakia, Hungary and Romania are connected to Germany, Poland and Czechia instead of being isolated.


The overall yearly supply-demand balance for the advanced infrastructure level in 2030 for the reference weather year is presented in Table 14. As detailed in Table 14, electrolytic hydrogen production is the main source of hydrogen in Europe. This assessment results in an approximate share of 4.3 % of hydrogen demand curtailment in Europe. This is a significant decrease compared to the curtailment rate of 8.3 % for the PCI/PMI hydrogen infrastructure level. Thereby, electrolytic hydrogen production, hydrogen production from natural gas and imports via terminals are all slightly reduced on yearly average as Algerian supply is partially replacing these supplies due to the merit order besides decreasing the hydrogen demand curtailment.

Yearly hydrogen supply-demand balance	Advanced IL
H ₂ produced via electrolysis	304
H ₂ produced using natural gas	224
H ₂ shipped imports	24
H ₂ pipeline imports	42
Curtailed H ₂ demand	27
H ₂ demand for power production	2
Total H₂ demand	620

Table 14: Supply and demand balance in the Advanced hydrogen infrastructure level in 2030 for reference weather year (unit: TWh/y).

Figure 12 shows the hydrogen production via electrolysis in the different European countries for the Advanced hydrogen infrastructure level in the 2030 assessment. The countries with highest electrolytic hydrogen production are Spain, Finland, Sweden,

and Germany. Some countries have more than one source of electrolytic hydrogen production. This is related to the intra-country assumptions, which is explained in section 6.1.1.

Figure 12: Distribution of hydrogen production via electrolysis in the Advanced hydrogen infrastructure level in 2030 for reference weather year (unit: GWh/y).

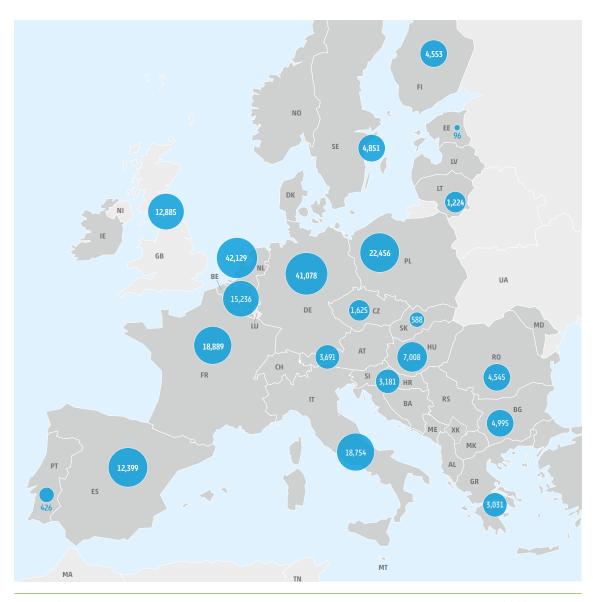


Figure 13: Distribution of hydrogen production from natural gas in the advanced infrastructure level in 2030 for reference weather year (unit: GWh/y).

Country	H₂ Production via electrolysis	H ₂ Production using natural gas	H₂ extra-EU imports by pipeline & ship	H ₂ demand
AT	1,132	3,691	0	10,901
BE	1,152	15,236	5,057	30,970
BG	46	4,995	0	3,768
CZ	237	1,625	0	6,849
CY	0	0	0	329
DE	33,977	41,078	5,443	154,844
DK	16,976	0	0	13,241
EE	0	96	0	540
ES	88,608	12,399	0	61,128
FI	46,746	4,553	0	34,184
FR	15,396	18,889	0	47,735
GR	271	3,031	0	6,482
HR	102	3,181	0	3,283
HU	77	7,008	0	9,312
IE	5,004	0	0	6,222
IT	7,470	18,754	41,799	26,504
LT	1,391	1,224	0	3,977
LU	203	0	0	2,695
LV	0	0	0	997
MT	0	0	0	284
NL	13,575	42,129	10,392	59,245
PL	4,816	22,456	2,633	52,434
PT	5,399	426	0	2,922
RO	129	4,545	0	12,359
SE	35,658	4,851	0	23,107
SI	328	0	0	1,544
SK	0	588	0	2,767
UK	25,759	12,885	0	41,537

Table 15: Distribution of hydrogen production, demand and hydrogen imports per country in the Advanced hydrogen infrastructure level in 2030 for reference weather year (unit: GWh/y).

Intra-EU cross-border flows emerge between different European countries due to limitations of available supplies and associated costs. Figure 14 shows these flows.

Compared to the PCI/PMI hydrogen infrastructure level, which contains the Iberian and the Nordic corridor, a new main corridor emerged in the advanced infrastructure level:

North African corridor, transporting e.g. Algerian supplies to Italy, Austria, Germany and other countries. In addition, among the interconnected countries within the advanced infrastructure level, new interconnections with Slovakia, Hungary and Romania enable new flows to these countries from German/Czechian and Austrian hubs.

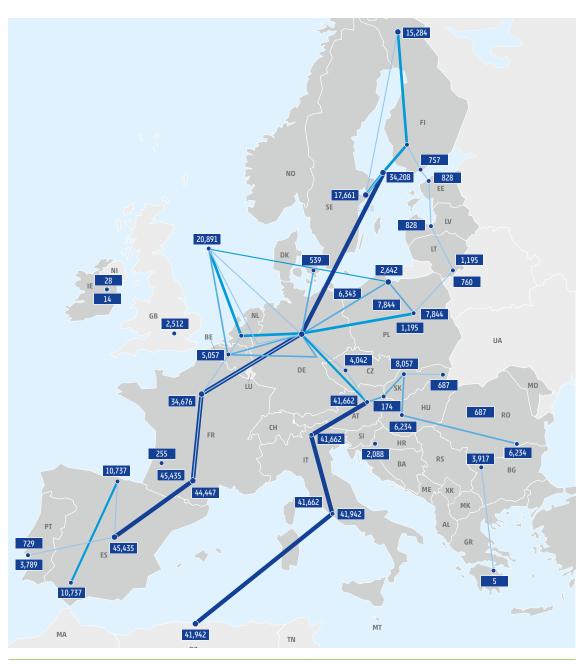


Figure 14: Grid flows* in the advanced infrastructure level in 2030 for reference weather year (unit: GWh/y).

^{*} Grid flows refer to simulations results and don't intend to represent how the European infrastructure is expected to evolve in the simulated years, being just outcomes of a modelling tool. The values are provided as a table in Annex II and as monthly values in Annex III).

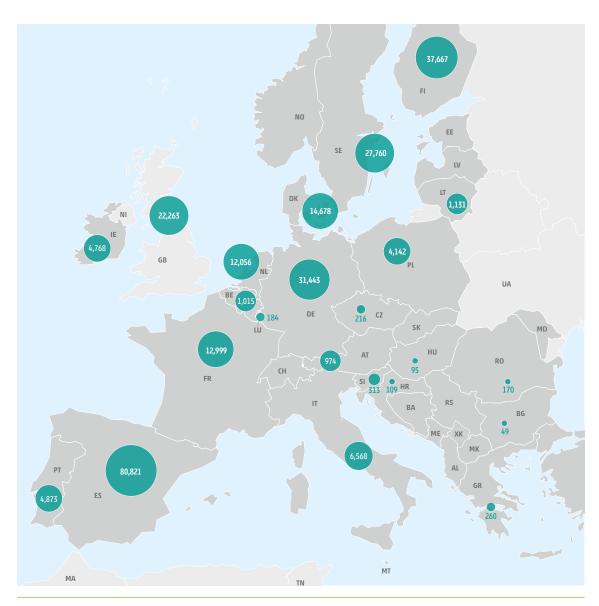
In the 2030 Advanced infrastructure level assessment countries can be grouped in four different categories according to their supply-demand balance on a yearly basis:

- 1. Countries that export more than they import: Sweden, Finland, Denmark, Spain, Portugal and Bulgaria.
- 2. Countries that import more than they export: Poland, Czechia, Greece, Romania and Belgium.
- 3. Transit countries that import more than they consume: Germany, Italy, Austria, France, Netherlands, Estonia, Latvia, Lithuania, Slovakia, Hungary.
- **4. Isolated countries:** The United-Kingdom, Ireland, Luxembourg, Slovenia, Croatia, Malta, Cyprus, Switzerland¹¹ and the cluster Bulgaria-Greece.

In comparison with the PCI/PMI hydrogen infrastructure level, Italy will change from exporting role to transit country due to the availability of North African supplies. In addition, Slovakia, Romania and Hungary could overcome isolation, and Austria changed from group 2 to group 3.

While on a yearly basis some countries are net exporters and some countries are net importers, net exporters may be relying on net imports during certain shorter periods of time and net importers may be providing net exports during certain shorter periods of time. This can result in bidirectional flows at interconnections. This situation is caused by the seasonality of electrolytic hydrogen production and to some extent by the seasonality of hydrogen demand.

High-level results for stressful weather year


The overall yearly supply-demand balance for the Advanced hydrogen infrastructure level in 2030 for the stressful weather year is presented in Table 16. As detailed in Table 16, electrolytic hydrogen production is the main source of hydrogen in Europe but it is reduced in comparison with the reference

weather year and is partially compensated by increase used of SMR. This assessment results in an approximate share of 6.1% of curtailed hydrogen demand at European level. This represents an increase by 2 percentage points in comparison with the reference weather year.

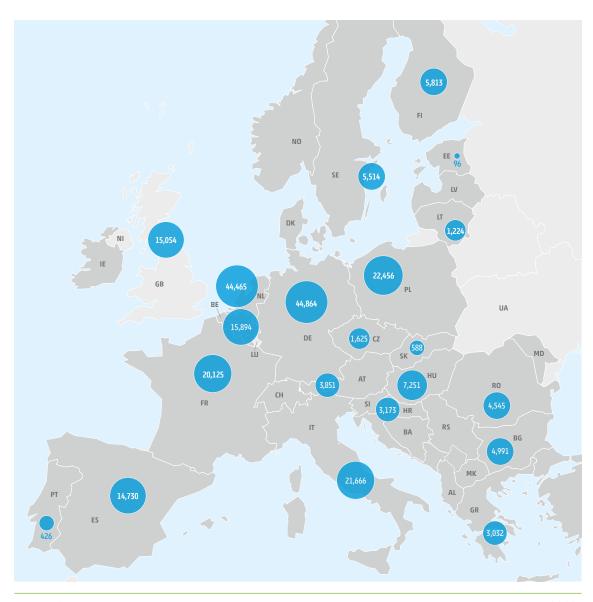

Yearly hydrogen supply-demand balance	Advanced IL
H ₂ produced via electrolysis	265
H ₂ produced using natural gas	241
H ₂ shipped imports	35
H ₂ pipeline imports	42
Curtailed H ₂ demand	38
H ₂ demand for power production	2
Total H₂ demand	620

Table 16: Supply and demand balance in the advanced infrastructure level in 2030 for stressful weather year (unit: TWh/y).

¹¹ IGI report does not consider hydrogen demand in Switzerland (based on TYNDP 2024 Draft Scenario report). However, there is no hydrogen infrastructure connecting Switzerland to any of its European neighbouring countries in the assessed infrastructure levels.

Figure 15: Distribution of hydrogen production via electrolysis in the advanced infrastructure level in 2030 for stressful weather year (unit: GWh/y).

Figure 16: Distribution of hydrogen production from natural gas in the Advanced hydrogen infrastructure level in 2030 for stressful weather year (unit: GWh/y).

^{*} Grid flows refer to simulations results and don't intend to represent how the European infrastructure is expected to evolve in the simulated years, being just outcomes of a modelling tool. The values are provided as a table in Annex II and as monthly values in Annex III).

Country	H₂ Production via electrolysis	H₂ Production using natural gas	H ₂ extra-EU imports by pipeline & ship	H ₂ demand
AT	974	3,851	0	10,901
BE	1,015	15,894	6,924	30,970
BG	49	4,991	0	3,768
CZ	216	1,625	0	6,849
CY	0	0	0	329
DE	31,443	44,864	7,847	154,500
DK	14,678	0	0	13,241
EE	0	96	0	540
ES	80,821	14,730	0	61,128
FI	37,667	5,813	0	34,184
FR	12,999	20,125	0	47,735
GR	260	3,032	0	6,482
HR	109	3,173	0	3,283
HU	95	7,251	0	9,312
IE	4,768	0	0	6,222
IT	6,568	21,666	42,075	26,504
LT	1,131	1,224	0	3,977
LU	184	0	0	2,695
LV	0	0	0	997
MT	0	0	0	284
NL	12,056	44,465	15,342	59,027
PL	4,142	22,456	3,539	52,283
PT	4,873	426	0	2,922
RO	170	4,545	0	12,359
SE	27,760	5,514	0	23,107
SI	313	0	0	1,544
SK	0	588	0	2,767
UK	22,263	15,054	0	41,537

Table 17: Distribution of hydrogen production, demand and hydrogen imports per country in the Advanced hydrogen infrastructure level in 2030 for stressful weather year (unit: GWh/y).

As shown in Figure 17, flow characteristics are the same as for the reference weather year. Less availability of RES for electrolytic hydrogen production reduces flows from European exporting countries.

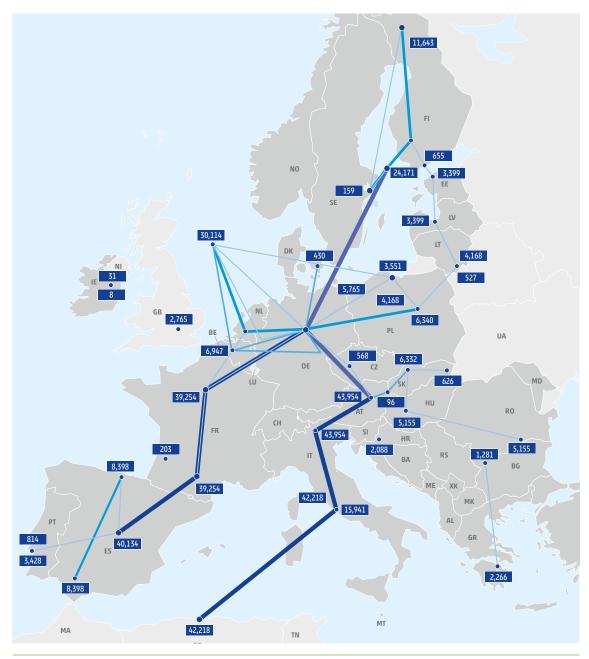
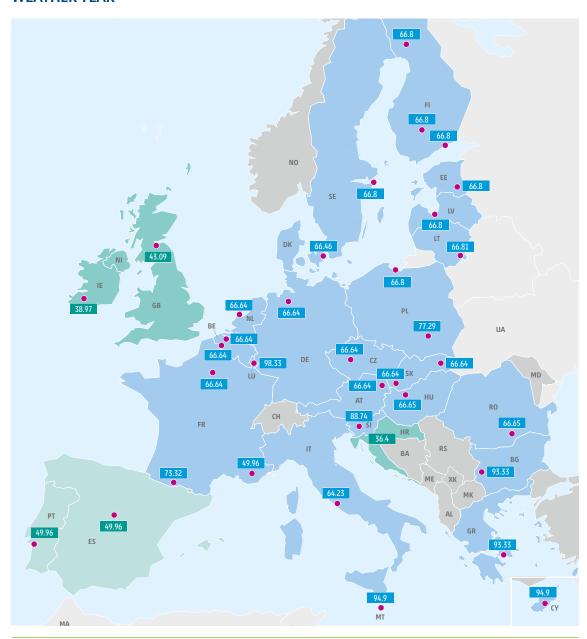



Figure 17: Grid flows in the Advanced hydrogen infrastructure level in 2030 for stressful weather year (GWh/y).

6.1.2.1 IGI INDICATOR 1: HYDROGEN MARKET CLEARING PRICE SPREADS FOR REFERENCE WEATHER YEAR

Figure 18: Average of the hourly hydrogen market clearing prices per country in the Advanced hydrogen infrastructure level in 2030 (unit: €/MWh).

The price formation in the DHEM is based on the merit order of hydrogen production (see section 4.1). Several price groups stand out, while a signification correlation is understood here as a correlation above 0.7:

- 1. Portugal, Spain, France-South region: Portugal and Spain are producers and net exporters of electrolytic hydrogen from RES to other countries. While the France-South region is sufficiently connected to the Iberian peninsula, price spreads appear with other groups of countries due to an internal bottleneck in France. It has a significant correlation with prices of groups 3 and 4.
- **2. France-Southwest region:** Local undersupply and limited supply from other regions due to internal bottlenecks in France.
- 3. Belgium, the Netherlands, Denmark, Germany, Czechia, Austria, Slovakia, Hungary Romania, Sweden, Finland, Estonia, Latvia, Lithuania, Poland-North region: Well interconnected region within Europe. It represents a merger between group 3 and group 4 of the PCI/PMI hydrogen infrastructure level assessment with the exception of Italy. It has significant correlation with prices in group 1 and group 4.

- **4. Italy:** Due to its access to Algerian imports and a capacity between Italy and Austria that sometimes acts as a bottleneck, meaning that capacity at this interconnection point is utilized at its maximum potential not allowing further exports (therefore, signalling needs for potential enhancements), Italy is an own price region. It has significant correlation with prices in group 1 and group 3.
- **5. Ireland, the United Kingdom, Poland-South region:** Isolated (regions of) countries without significant price correlations but with average prices below 100 €/MWh.

- **6. Greece, Bulgaria:** Countries showing significant price correlation, jointly isolated from the other European countries.
- 7. Slovenia, Luxembourg, Croatia, Cyprus, Malta: Isolated countries without significant price correlations and with average prices above 100 €/MWh.The price correlations listed above are enabled by the infrastructure projects already considered in this hydrogen infrastructure level. However, price differences that led to the identification of the groups listed above are not necessarily describing an infrastructure gap. For this identification of infrastructure gaps, the thresholds of IGI indicator 1 are used.

Border	Threshold 1: Absolute average hourly hydrogen market clearing price spread above 4 €/MWh (number of days)	Threshold 2: More than 40 days with hydrogen market clearing price spread above 20 €/MWh (number of days)
DEh ₂ -PLh ₂ S	29	182
FRh ₂ -FRh ₂ S	24	158
FRh ₂ -FRh ₂ SW	58	322
FRh ₂ S-FRh ₂ SW	72	346
HUh ₂ -HRh ₂	44	277
ITh ₂ -HRh ₂	41	260
NLh ₂ -UKh ₂	41	230
PLh ₂ N-PLh ₂ S	29	178
PLh ₂ S-CZh ₂	29	182
PLh ₂ S-SKh ₂ E	29	182
ROh ₂ -BGh ₂	39	273
SIh ₂ -HRh ₂	77	364
SKh ₂ E-PLh ₂ S	29	182
UKh ₂ -BEh ₂	41	230
UKh ₂ -IEh ₂	19	112

Table 18: List of borders in the advanced infrastructure level that exceed (at least one of) the thresholds defined for IGI indicator 1 in 2030 (unit: days).

Hydrogen market clearing price spreads

If one of the two thresholds of IGI indicator 1 is passed, a regional hydrogen infrastructure gap is assumed to be identified (see section 4.1). Table 18 lists the borders for which Threshold 1 and Threshold 2 were passed. In this case, both thresholds were always passed at the same borders.

In comparison with the PCI/PMI hydrogen infrastructure level, the price spreads at the following borders decreased below the thresholds through the additional infrastructure of the Advanced hydrogen infrastructure level (see Figure 19):

- Hungary: Borders with Austria, Romania, Slovakia
- ▲ Slovakia: Borders with Austria and Czechia.

6.1.2.2 IGI INDICATOR 2.1: HYDROGEN DEMAND CURTAILMENT FOR REFERENCE WEATHER YEAR

As explained in section 4.2, this IGI indicator assesses infrastructure gaps by quantifying hydrogen demand curtailments at individual nodes during the reference weather year, assuming no disruptions of infrastructures or of supply sources. It involves a multi-step simulation process integrating DHEM and DGM¹² outputs to evaluate the combined curtailments across nodes. The assessment is performed for the Advanced hydrogen infrastructure level in 2030.

Figure 19 and Table 19 show yearly average curtailment rates of hydrogen demand in the Zone 2 nodes of different European countries. For countries where the hydrogen market is divided into several sub-zones (i.e., nodes), the curtailment rate in the different sub-zones is presented. The yearly average hydrogen curtailment rates are thereby colour-coded in the map to indicate levels relative to the set threshold: blue signifies curtailment above the threshold, while green represents rates that are not above it.

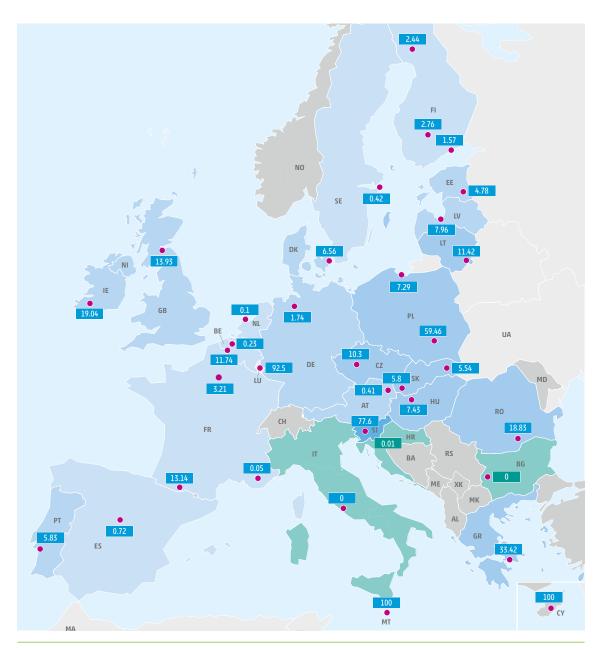


Figure 19: Yearly average hydrogen demand curtailment rate at country or node level in the advanced infrastructure level in 2030 for reference year (unit: %).

 $^{12\ \} This\ draft\ TYNDP\ 2024\ IGI\ report\ only\ includes\ the\ simulation\ results\ of\ the\ DHEM.$

H ₂ Demand Zone	Yearly average curtailment rate (%)	Threshold passed
ATh ₂	0.4	NO
BEh ₂	0.2	NO
BEh ₂ Mo	11.7	YES
BGh ₂	0.0	NO
CYh ₂	100.0	YES
CZh ₂	10.3	YES
DEh ₂	1.7	YES
DKh ₂	6.6	YES
EEh ₂	4.8	YES
ESh ₂	0.7	YES
Flh ₂	2.8	YES
Flh ₂ N	2.3	YES
FIH ₂ S	1.6	YES
FRh ₂	3.2	YES
FRh ₂ S	0.0	NO
FRh ₂ SW	13.1	YES
GRh ₂	33.4	YES
HRh ₂	0.0	NO

H ₂ Demand	Yearly average	Threshold
Zone	curtailment rate (%)	passed
HUh ₂	7.4	YES
IEh ₂	19.0	YES
ITh ₂	0.0	NO
LTh ₂	11.4	YES
LUh ₂	92.5	YES
LVh ₂	8.0	YES
MTh ₂	100.0	YES
NLh ₂	0.1	NO
PLh ₂ N	7.3	YES
PLh ₂ S	59.5	YES
PTh ₂	5.8	YES
ROh ₂	18.8	YES
SEh ₂	0.4	NO
Slh ₂	77.6	YES
SKh ₂ E	5.8	YES
SKh ₂ W	5.5	YES
UKh ₂	13.9	YES

Table 19: Yearly average hydrogen demand curtailment rate at country/sub-zone level in the advanced infrastructure level in 2030 for reference weather year (unit: %).

In the 2030 assessment of the advanced infrastructure level, hydrogen demand is curtailed in most European countries.

As explained in the description of the Advanced hydrogen infrastructure level (see section 3.2), with limited availability of extra-EU supplies, hydrogen demand is satisfied mainly with electrolytic hydrogen production and hydrogen production from natural gas. Countries with higher availability of supply from those sources or from imports show lower curtailment rates. Most countries including strong net exporters face (weather-induced) disruptions. In comparison with IGI indicator 1, this IGI indicator focusses on the availability of supplies.

As detailed in Table 19, (regions of) countries can be aggregated in six different groups according to their average yearly hydrogen demand curtailment rates:

- **1. Rates below 0.1 %:** Bulgaria, Croatia, Italy, France-South region, the Netherlands.
- 2. Rates between 0.1 % and 5 %: Belgium, Austria, Finland, Germany, Spain, Sweden, France, Estonia.
- 3. Rates between 5 % and 20 %: Denmark, Poland-North region, Hungary, Ireland, Latvia, Lithuania, Portugal, Belgium-Mons region, Czechia, Slovakia, France-Southwest region, Romania, the United Kingdom.
- 4. Rates between 20 % and 50 %: Greece.
- **5. Rates between 50 % and 100 %:** Slovenia, Poland-South region, Luxembourg.
- 6. Full curtailment of 100 %: Cyprus, Malta.

Without the infrastructure already considered in the hydrogen infrastructure level, the overall hydrogen demand curtailment would be higher.

Compared with the PCI/PMI hydrogen infrastructure level, group 1 also includes the France-South region and the Netherlands. All countries in this group do not face any hydrogen demand disruption (i.e., 0 % curtailment rates). The very low curtailment of Italy in the PCI/PMI infrastructure level (i.e., 0.1%) is completely removed due to the additional imports from North Africa. The France-South region can benefit from privileged access to Iberian supply. The Netherlands benefit from additional import capacities. Furthermore, Bulgaria, Croatia have high shares of hydrogen produced from natural gas to cover nation demand.

Compared to the PCI/PMI hydrogen infrastructure level, group 2 grows by France and Estonia. Among the countries of group 2, Spain, Sweden and Finland receive a significant share of their supply from national electrolytic hydrogen production, while Belgium, the Netherlands, Austria and Germany have their curtailment reduced thanks to (indirect) access to the extra-EU import capacities in North Africa unlocked in the Advanced level. Austria and Germany have (indirect) access to extra-EU import capacities. France benefits both from Iberian supply as well as imports to countries in its East, Estonia benefits from its proximity to Finland, and Austria benefits from its connections with both Germany and Italy.

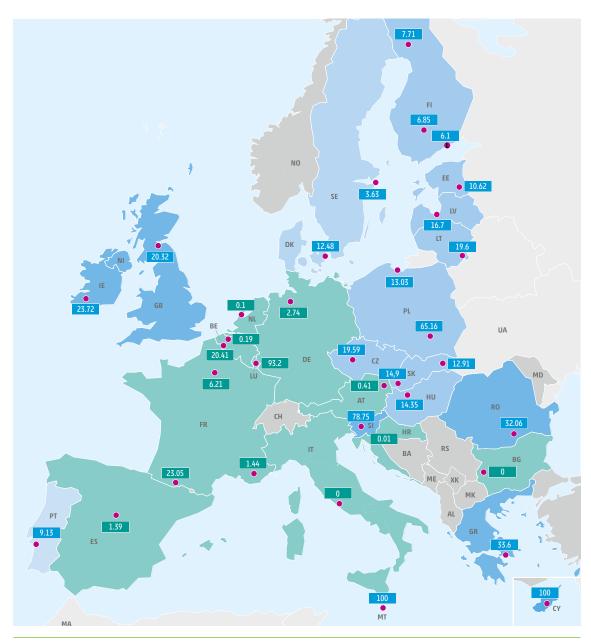
Compared to the PCI/PMI hydrogen infrastructure level, group 3 grows by the Poland-North region, Hungary, the Belgium-Mons region, Czechia, Slovakia, the France-Southwest region, and Romania due to non-PCI projects with advanced status that provide additional capacities to supply these countries/regions. Among the countries of group 3, some countries like Denmark, Portugal, the United Kingdom and Ireland, despite having significant electrolytic hydrogen production compared to the national demand, still cannot cover all demand when RES are not available. In the cases of Denmark and Portugal, being peripheric countries, their neighbouring countries (i.e., Germany and Spain) can help to mitigate hydrogen demand curtailment. Lithuania and Latvia can receive hydrogen from Finland via Estonia and from Poland to mitigate demand curtailment. Estonia and Poland will both only provide hydrogen to Lithuania and Latvia when having access to surplus hydrogen quantities. In the case of the United Kingdom and Ireland, being isolated from Europe leads to higher curtailment rates due to limited options for cross-border balancing.

Within the same group 3, Slovakia, Hungary and Romania are benefiting from new interconnections. Thereby, Slovakia is the transit country to Hungary and Hungary is the transit country to Romania. While the France-Southwest region is still isolated and strictly depends on local production, the hydrogen demand curtailment is reduced compared to the PCI/PMI hydrogen infrastructure level. This is enabled by the additional hydrogen storage capacities in the France-Southwest region in the advanced infrastructure level. In addition, Czechia benefits from the fact that its western neighbours can share more hydrogen surplus.

In group 4, Greece shows a curtailment rate of 33.4 %, which can be explained by the fact that despite the new interconnections in the advanced infrastructure level in Eastern Europe, Greece and Bulgaria remained isolated and therefore their situation is not improved compared to the PCI/PMI hydrogen infrastructure level.

Group 5 includes countries with very high curtailment rates. All the countries in this group are fully isolated and rely on national hydrogen supplies mainly produced from natural gas.

Group 6 includes only isolated countries that have hydrogen demand but no national hydrogen production assets connected to Zone 2.


In Denmark, Finland, Ireland, Sweden, and Slovenia, on top of the hydrogen demand curtailments observed in Zone 2 nodes as described in the paragraphs above, hydrogen demand curtailments can be observed in Zone 1. While these curtailments are limited to a few months in Sweden and Finland, it is of relevance in every month in Ireland and reaches high levels in Denmark and Slovenia. Compared to the PCI/PMI hydrogen infrastructure level, these curtailments are slightly reduced due to higher availability of electricity for electrolytic hydrogen production due to additional imports (i.e., new availability of North African imports and import terminals).

6.1.2.3 IGI INDICATOR 2.2: HYDROGEN DEMAND CURTAILMENT FOR STRESSFUL WEATHER YEAR

Threshold 1: Average yearly hydrogen demand curtailment rate above 3 %

Table 20 shows the yearly average hydrogen demand curtailment rates in the Zone 2 nodes of various European countries for 2030, simulated under a stressful weather year. This weather scenario assumes adverse conditions, such as reduced wind and solar energy availability, which directly impacts electrolytic hydrogen production. For countries with

hydrogen markets divided into multiple sub-zones (i.e., nodes), curtailment rates are depicted individually for each sub-zone on the map. The yearly average hydrogen curtailment rates are thereby colour-coded to indicate levels relative to the set threshold 1: blue signifies curtailment above the threshold, while green represents rates that are not.

Figure 20: Yearly average hydrogen demand curtailment rate at country or node level in the advanced infrastructure level in 2030 for stressful weather year (unit: %).

In interconnected countries, the average hydrogen demand curtailment rates in Zone 2 are more or less doubled compared to the reference weather year as less hydrogen is available during stressful weather conditions.

H ₂ Demand Zone	Yearly average curtailment rate (%)	Threshold 1 passed
ATh ₂	0.4	YES
BEh ₂	0.2	NO
BEh ₂ Mo	20.4	YES
BGh ₂	0.0	NO
CYh ₂	100.0	YES
CZh ₂	19.6	YES
DEh ₂	2.7	NO
DKh ₂	12.5	YES
EEh ₂	10.6	YES
ESh ₂	1.4	NO
Flh ₂	6.9	YES
Flh ₂ N	6.3	YES
FIH₂S	6.1	YES
FRh ₂	6.2	YES
FRh ₂ S	0.3	NO
FRh ₂ SW	23.1	YES
GRh ₂	33.6	YES
HRh ₂	0.0	NO
HUh ₂	14.4	YES
IEh ₂	23.7	YES
ITh ₂	0.0	NO
LTh ₂	19.6	YES
LUh ₂	93.2	YES
LVh ₂	16.7	YES
MTh ₂	100.0	YES
NLh ₂	0.1	NO
PLh ₂ N	13.0	YES
PLh ₂ S	65.2	YES
PTh ₂	9.1	YES
ROh ₂	32.1	YES
SEh ₂	3.6	YES
SIh ₂	78.8	YES
SKh ₂ E	14.2	YES
SKh ₂ W	12.9	YES
UKh ₂	20.3	YES

Table 20: Yearly average hydrogen demand curtailment rate at country/sub-zone level in the advanced infrastructure level in 2030 for stressful weather year (unit: %).

As detailed in Table 20, (regions of) countries can be aggregated in different groups according to their average yearly hydrogen demand curtailment rates:

- 1. Rates below 3 %: Bulgaria, Croatia, Italy, the Netherlands, Belgium, Austria, Germany, Spain France-South region.
- 2. Rates between 3 % and 20 %: Sweden, France, Denmark, Finland, Poland-North region, Hungary, Latvia, Lithuania, Estonia, Portugal, Czechia, Slovakia.
- **3. Rates between 20 % and 50 %:** Belgium-Mons region, France-Southwest region, Greece Ireland, Romania, the United Kingdom.
- **4. Rates between 50 % and 100 %:** Slovenia, Poland-South region, Luxembourg.
- 5. Full curtailment of 100 %: Cyprus, Malta. Compared with the PCI/PMI hydrogen infrastructure level, group 1 grows by Germany and Austria, reducing these countries' hydrogen demand curtailment below the threshold of IGI indicator 2.2.

Threshold 2: hydrogen demand curtailment rate of more than 5 % for at least one month per year

All the countries and regions that exceed threshold 1 also exceeded threshold 2.

6.2 COMPARISON BETWEEN PCI/PMI HYDROGEN INFRASTRUCTURE LEVEL AND ADVANCED INFRASTRUCTURE LEVEL

6.2.1 MAXIMUM UTILISATION OF INTERCONNECTIONS

Table 21 displays the maximum utilisation rates of hydrogen interconnections for both hydrogen infrastructure levels in 2030 for the reference weather year. Table 22 shows this information for the stressful weather year.

As stated in section 3, some countries are completely isolated from the hydrogen infrastructure:

✓ Countries and regions that are isolated in both hydrogen infrastructure levels: Slovenia, Ireland, the United Kingdom, Cyprus, Malta, France-Southwest region, Poland-South region, Luxembourg, Bulgaria and Greece are interconnected with each other but isolated from the main backbone. Countries that are only isolated in the PCI/PMI hydrogen infrastructure level: Slovakia, Hungary, Romania, Bosnia, Croatia and Poland-North region are interconnected with each other in the Advanced hydrogen infrastructure level but isolated from the main backbone.

When interpreting the tables, the strategic dimensioning of interconnections becomes more evident when also considering the data for 2040 as presented in section 7.2.1. As hydrogen pipelines have significant economies of scale, one early investment with a large pipeline diameter can represent an anticipatory investment.

	Stated o	lirection	Reverse (direction	
Interconnection	PCI/PMI IL	ADV IL	PCI/PMI IL	ADV IL	Comments
ATh ₂ → DEh ₂	60	100	48	48	As DZ supply is added in the ADV IL, flows from AT to DE increase as AT has more access to North African H ₂ through Italy
$ATh_2 \rightarrow IB-ITh_2$	44	9	63	100	As DZ supply is added in the ADV IL, the max. utilisation rate is reached.
$ATh_2 \rightarrow IB-SKh_2W$		40		0	As no UA supply is available, AT supplies SK.
BAh ₂ → HRh ₂		0		0	The low utilisation is caused by low hydrogen supply to these jointly isolated countries, so BA and HR always need hydrogen supply themselves if the other country needs it.
$BEh_2 \rightarrow DEh_2$	85	85	80	80	With additional supply options in ADV IL, DE's dependence on BE's supplies decreases.
BEH ₂ Mo → FRh ₂ Va	0	0	15	15	The flow direction is from FR to BE.
$BEh_2 \rightarrow NLh_2$	0	0	100	100	The flow direction is from NL to BE.
$BGh_2 \rightarrow GRh_2$	6	6	8	8	The low utilization is caused by the isolation of these countries along with the relatively low supply of hydrogen
$CZh_2 \rightarrow DEh_2$	0	0	6	7	The flow direction is from DE to CZ as no UA supply is available.
$DEh_2 \rightarrow DKh_2$	38	39	67	67	
$DEh_2 \rightarrow FRh_2$	100	100	100	98	
$DEh_2 \rightarrow NLh_2$	59	30	73	56	With additional supply options in ADV IL, the offered import flexibilities reduce max. utilisation.
$DEh_2 \rightarrow PLh_2N$		100		0	The flow direction is from DE to PL.

	Stated d	irection	Reverse o	lirection	
Interconnection	PCI/PMI IL	ADV IL	PCI/PMI IL	ADV IL	Comments
DEh ₂ → PLh ₂ nbc	100	76	3	0	The flow direction is from DE to PL. New terminal in PL and new connection from DE to PL (supplied by new supply options) in ADV IL reduce max. utilisation.
DEh ₂ ba → DEh ₂		100			
DEh₂bp → DEh₂ba		0			
EEh ₂ → FIh ₂ S	46	77	6	6	New terminal in PL and new connection from DE to PL (supplied by new supply options) in ADV IL increase max. utilisation.
EEh ₂ → LVh ₂	5	5	47	78	With additional supply options and connection from DE to PL in ADV IL West of LV, max. utilisation from LV to EE can be increased.
ESh ₂ → FRh ₂ S	95	95	0	83	Capacity from ES to FR-South would be a bottleneck if FR-South to FR was not already restricting flows.
$ESh_2 \to PTh_2$	9	9	22	22	
Flh ₂ → Flh ₂ Al	26	17	10	10	
Flh ₂ → Flh ₂ N	0	0	1	1	Very high capacities set in the model as this arc is not representing a bottleneck.
Flh ₂ → Flh ₂ S	0.4	0.3	0.4	0.3	Very high capacities set in the model as this arc is not representing a bottleneck.
Flh ₂ Al → DEh ₂	71	60			Flow direction is from FI to DE.
Flh ₂ Al → SEh ₂	0	6	15	15	
Flh ₂ N → SEh ₂	23	23	10	21	
FRh ₂ → FRh ₂ S	100	100	100	100	Capacity from FR-South to FR is a bottleneck that limits supplies from ES.
FRh ₂ → FRh ₂ Va	15	15	7	7	
HUh ₂ → IB-SKh ₂ C		0		57	Flow direction is SK to HU. The max. utilisation would be higher if there was more hydrogen supply to Europe, allowing SK to transit more hydrogen to HU and downstream countries which remain having HCR.
HUh ₂ → ROh ₂		44		0	Flow direction is HU to RO. The max. utilisation would be higher if there was more hydrogen supply to Europe, allowing HU to transit more hydrogen to RO which remains having high HCR.
$\text{IB-ITh}_2 \rightarrow \text{ITh}_2$	0	0	63	84	
IB-SKh ₂ C → SKh ₂ E		3		0	The max. utilisation would be higher if there was more hydrogen supply to Europe as countries in the area remain having HCR.
IB-SKh ₂ C → SKh ₂ W		46		42	The max. utilisation would be higher if there was more hydrogen supply to Europe as countries in the area remain having HCR.
$IB\text{-}SKh_2E \to SKh_2E$		0		0	The max. utilisation would be higher if there was more hydrogen supply to Europe as countries in the area remain having HCR.
$\text{IB-SKh}_2\text{W} \rightarrow \text{CZh}_2$		15			SK supplies hydrogen received from AT to CZ.
$IB\text{-}SKh_2W \rightarrow SKh_2W$		40		0	The max. utilisation would be higher if there was more hydrogen supply to Europe as countries in the area remain having HCR.
LTh ₂ → LVh ₂	50	81	4	4	With additional supply options and connection from DE to PL in ADV IL West of LT, max. utilisation from LT to LV can be increased.

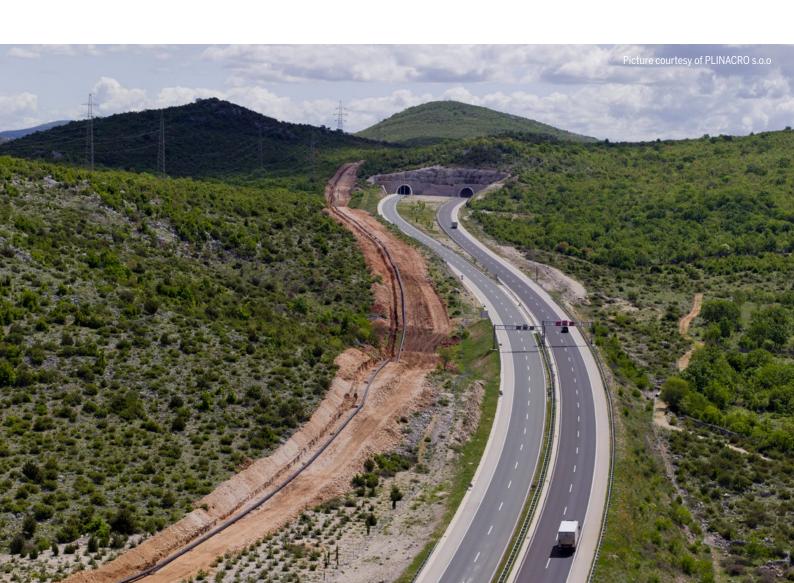

	Stated d	irection	Reverse direction			
Interconnection	PCI/PMI IL	ADVIL	PCI/PMI IL	ADV IL	Comments	
LTh ₂ → PLh ₂ nbc	3	0	52	88	With additional supply options and connection from DE to PL in ADV IL West of LT, max. utilisation from PL to LT can be increased.	
PLh₂nbc → PLh₂N	54	23			New terminal in PL-North and new connection from DE to PL (supplied by new supply options) in ADV IL reduce max. utilisation.	
$DEh_2bp \rightarrow DEh_2$		100			Allows import through DEbp terminal in ADV IL.	
DZh ₂ → ITh ₂		26			The max. utilisation is limited by the hydrogen supply potential of DZ as defined in TYNDP 2024 scenarios.	
LH ₂ _Tk_BE → BEh ₂	100	100			In PCI/PMI IL, terminal capacities are bottleneck for hydrogen imports as not reaching supply potentials as defined in TYNDP 2024 scenarios. Bottleneck is lifted in ADV IL.	
LH ₂ _Tk_DE → DEh ₂	100	100			In PCI/PMI IL, terminal capacities are bottleneck for hydrogen imports as not reaching supply potentials as defined in TYNDP 2024 scenarios. Bottleneck is lifted in ADV IL.	
LH ₂ _Tk_DEbp → DEh ₂ bp	0	100			New connection allows utilisation of DEbp terminal in ADV IL.	
LH ₂ _Tk_NL → NLh ₂	100	100			In PCI/PMI IL, terminal capacities are bottleneck for hydrogen imports as not reaching supply potentials as defined in TYNDP 2024 scenarios. Bottleneck is lifted in ADV IL.	
$LH_2_Tk_PLN \rightarrow PLh_2N$		100			New terminal in ADV IL.	

Table 21: Maximum utilisation rates of interconnections in the PCI/PMI hydrogen infrastructure level and in the Advanced hydrogen infrastructure level in 2030 for the reference weather year (unit: %).

	Stated direction		Reverse direction		Comments on significant deviations from
Interconnection	PCI/ PMI IL	ADV IL	PCI/ PMI IL	ADV IL	the maximum utilization rates compared with the reference weather year
ATh ₂ → DEh ₂	60	100	48	14	
$ATh_2 \rightarrow IB\text{-}ITh_2$	44	0	64	100	
$ATh_2 \rightarrow IB\text{-}SKh_2W$		52		100	
$BAh_2 \rightarrow HRh_2$		0		0	
$BEh_2 \rightarrow DEh_2$	85	85	80	80	
$BEh_2 \rightarrow NLh_2$	0	0	100	100	
$BEH_2Mo \rightarrow FRh_2Va$	0	0	15	15	
$BGh_2 \rightarrow GRh_2$	6	6	8	5	
$CZh_2 \rightarrow DEh_2$	0	0	7	6	
$DEh_2 \rightarrow DKh_2$	39	39	66	57	
$DEh_2 \rightarrow FRh_2$	95	80	100	98	
$DEh_2 \rightarrow NLh_2$	58	31	73	56	
$DEh_2 \rightarrow PLh_2N$	100	100		64	
DEh ₂ → PLh ₂ nbc	100	100	3	0	Dependence of Nordic hydrogen production on RES and lower RES availability increase max. utilisation from DE to PL to decrease HCR in the Baltics.
DEh ₂ ba → DEh ₂		0			
DEh₂bp → DEh₂ba		100			
EEh ₂ → FIh ₂ S	46	83	6	6	Dependence of Nordic hydrogen production on RES and lower RES availability increase max. utilisation from EE to FI to decrease HCR in the Baltics.
$\text{EEh}_2 \rightarrow \text{LVh}_2$	5	5	47	84	Dependence of Nordic hydrogen production on RES and lower RES availability increase max. utilisation from LV to EE to decrease HCR in the Baltics.
ESh ₂ → FRh ₂ S	95	95	83	83	Dependence of Iberian hydrogen production on RES and lower RES availability increase max. utilisation from FR to ES to decrease HCR in ES and PT.
ESh ₂ → PTh ₂	10	10	22	22	
Flh ₂ → Flh ₂ Al	26	17	10	6	
Flh ₂ → Flh ₂ N	0	0	1	1	
Flh ₂ → Flh ₂ S	0	0.2	1	0.4	
Flh ₂ Al → DEh ₂	70	61			
Flh ₂ Al → SEh ₂	0	7	15	16	
$Flh_2N \rightarrow SEh_2$	23	23	29	29	
$FRh_2 \rightarrow FRh_2S$	100	100	100	100	
FRh ₂ → FRh ₂ Va	15	15	7	7	
$HUh_2 \rightarrow IB\text{-}SKh_2C$		0		51	
$HUh_2 \rightarrow ROh_2$		44		0	
$IB-ITh_2 \rightarrow ITh_2$	64	0	60	84	
$IB\text{-SKh_2C} \to SKh_2E$		3		0	
$IB\text{-SKh_2C} \to SKh_2W$		0		38	
$\text{IB-SKh}_2\text{E} \rightarrow \text{SKh}_2\text{E}$		0		0	
$IB\text{-}SKh_2W \rightarrow CZh_2$		15			

	Stated direction		Reverse direction		Comments on significant deviations from
Interconnection	PCI/ PMIIL	ADV IL	PCI/ PMI IL	ADV IL	the maximum utilization rates compared with the reference weather year
IB-SKh ₂ W → SKh ₂ W		42		0	
LTh ₂ → LVh ₂	50	87	4	4	Dependence of Nordic hydrogen production on RES and lower RES availability increase max. utilisation from LT to LV to decrease HCR in the Baltics.
LTh ₂ → PLh ₂ nbc	3	0	52	88	Dependence of Nordic hydrogen production on RES and lower RES availability increase max. utilisation from PL to LT to decrease HCR in the Baltics.
PLh ₂ nbc → PLh ₂ N	54	23			
$DEh_2bp \rightarrow DEh_2$		100			
$DZh_2 \rightarrow ITh_2$		26			
$LH_2_Tk_BE \to BEh_2$	100	100			
$LH_2_Tk_DE \to DEh_2$	100	100			
$LH_2_Tk_DEbp \to DEh_2bp$	0	100			
$LH_2_Tk_NL \to NLh_2$	100	100			
$LH_2_Tk_PLN \rightarrow PLh_2N$		100			

Table 22: Maximum utilisation rates of interconnections in the PCI/PMI hydrogen infrastructure level and in the Advanced hydrogen infrastructure level in 2030 for the stressful weather year (unit: %).

6.2.2 ANALYSIS WITH HYPOTHETICAL INFRASTRUCTURE APPROACH

The main purpose of this section is the investigation of any system limitations due to the potential bottlenecks in the PCI/PMI and Advanced infrastructure levels, without any implications regarding the development of specific projects¹³. It has been found already in the previous sections that infrastructure gaps were identified between Advanced infrastructure level and PCI/PMI infrastructure level. The Advanced infrastructure level is containing all projects presented in the PCI/PMI infrastructure level, as well as additional projects. The Advanced infrastructure level includes all projects presented in the PCI/PMI infrastructure level, as well as additional projects. To explore different possibilities and limitations, four different hypothetical scenarios were defined:

- ✓ Unlimited Pipes (UP): unlimited connections between (transmission) nodes;
- Unlimited Pipes + Storages (UPS): unlimited connections between nodes + unlimited storage withdrawal, injection and working gas volume in existing storage countries;
- Unlimited Imports (UI): unlimited imports capacities for imports defined in each infrastructure level and reference years;
- ✓ Unlimited Storages (US): unlimited storage withdrawal, injection and working gas volume in existing storage countries;

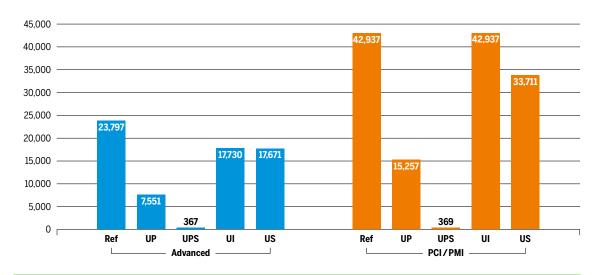


Figure 21: Shortage Advanced level and Shortage PCI/PMI level 2030 (unit: GWh/y).

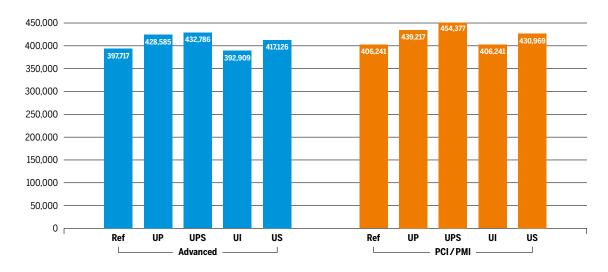


Figure 22: Electrolyser production Advanced level 2030 and PCI level 2030 (unit: GWh/y).

 $^{13\ \} See section\ 6\ of\ Annex\ D2\ -\ Hydrogen\ Infrastructure\ Gaps\ Identification\ Methodology,\ available\ on\ \underline{https://tyndp2024.entsog.eu/downloads/linearing}$

Under unlimited pipelines scenario, shortage is mitigated in both cases by more than 50%. Internal bottlenecks are depicting limitations to meet the demand and supply. Moreover, adding more flexibility by utilizing storages is reducing almost all curtailment. Thus, additional investments, to enhance interconnections and storages capacities could mitigate curtailment in Europe in 2030.

Moreover, when comparing with the unlimited imports scenario, where it seems to not give much

extra benefits, it confirms that internal bottlenecks are the limitation to enable flow to go from different supply sources to demand.

By comparing the integration of electrolysers production is evident that the bottlenecks are limiting the integration of power generation in the system.

This integration of electrolysers production is also valid for all other production sources.

6.2.3 IDENTIFICATION OF PROJECTS THAT SOLVED OR MITIGATED INFRASTRUCTURE GAPS

Solved infrastructure gaps in Advanced hydrogen infrastructure level compared to PCI/PMI hydrogen infrastructure level

The additional projects of the advanced infrastructure level could solve the following indications of regional hydrogen infrastructure gaps:

- Borders as captured by IGI indicator 1: Hungary-Austria, Hungary-Romania, Hungary-Slovakia, Slovakia-Austria, Slovakia-Czechia.
- ▲ Countries and regions as captured by IGI indicator 2.1: France-South region, the Netherlands.

▲ Countries and regions as captured by IGI indicator 2.2: Austria, Germany.

Nevertheless, not all IGI indicators could be solved from a regional perspective even if the advanced hydrogen projects provide benefits.

Identification of advanced, non-PCI/PMI projects responsible for solving hydrogen infrastructure gaps by addressing hydrogen infrastructure bottlenecks

The following advanced, non-PCI/PMI projects contributed to mitigate the identified infrastructure gaps in the 2030 assessment:

- ▲ Pipeline imports
 - North African hydrogen corridor to Italy (North Africa hydrogen corridor)
- ✓ Intra-EU connections:
 - Austria to Slovakia (Slovak Hydrogen Backbone)
 - Netherlands to Germany (H2Coastlink, IP Elten/Zevenaar - Cologne, Hyperlink and H2ercules Network North-West)
 - Germany to Poland (Pomeranian Green Hydrogen Cluster)
 - Slovakia to Hungary (HU/SK hydrogen corridor and SK-HU H₂ corridor)

▲ Import terminals

- New Ammonia terminal in Gdansk and Hydrogen Highway – Northern Section
- Increased terminal capacity in the Netherlands (Eemshaven H_2)
- - Hydrogen storage projects in Germany (RWE H₂ Storage Gronau-Epe, UST Hydrogen Storage Krummhörn, RWE H₂ Storage Xanten, EWE Hydrogen Storage Huntorf, EWE Hydrogen Storage Jemgum, RWE H₂ Storage Staßfurt, EWE Hydrogen Storage Huntorf)
 - Hydrogen storage project in the France-Southwest region (HySoW storage) of France

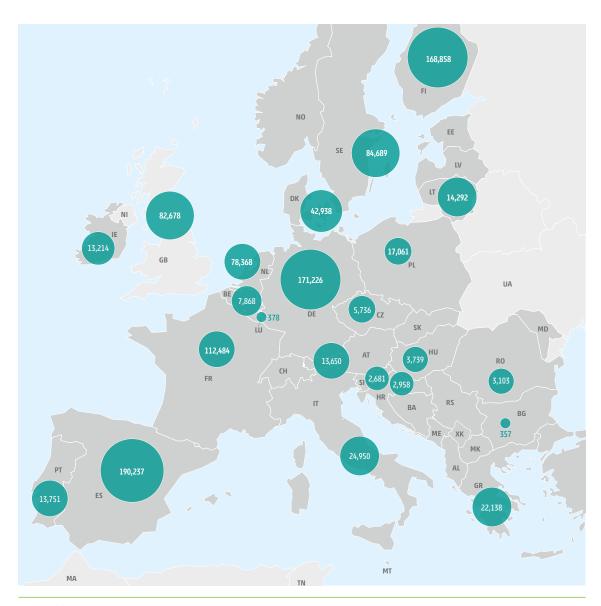
Besides the projects listed above, the projects included in the PCI/PMI hydrogen infrastructure level also contribute to the solving and mitigation of infrastructure gaps.

7 ASSESSMENT FOR 2040

This section describes the evolution of the IGI indicators for the reference weather year (i.e., 1995) and the stressful weather year (i.e., 2009) for the analysed infrastructure levels (i.e., PCI/PMI and Advanced hydrogen infrastructure levels) for the simulation year 2040.

7.1 INFRASTRUCTURE GAPS IDENTIFICATION

7.1.1 ASSESSMENT OF PCI/PMI HYDROGEN INFRASTRUCTURE LEVEL


High-level results for reference weather year

The overall yearly supply-demand balance for the PCI/PMI hydrogen infrastructure level in 2040 is presented in Table 23. As detailed in Table 23, the overall hydrogen demand triples compared to the 2030 hydrogen demand level, leading to a yearly hydrogen demand of 1936 TWh/y in Europe. Electrolytic hydrogen production remains the main source of hydrogen in Europe, satisfying 56 % of the yearly hydrogen demand of Europe.

Despite i) the infrastructure development foreseen in the PCI/PMI hydrogen infrastructure level for 2040 (see section 3), ii) the increase of extra-EU supply potentials via terminals and pipelines, and iii) the significant increase of electrolytic hydrogen production (by approximately 246 %), this is not sufficient to satisfy the hydrogen demand in many European countries. Therefore, overall hydrogen demand curtailment rises compared to the 2030 values leading to an average hydrogen curtailment rate of 15 % in Europe.

Yearly hydrogen supply-demand balance	PCI/PMI IL 2030	PCI/PMI IL 2040
H ₂ produced via electrolysis	310	1,074
H ₂ produced using natural gas	229	162
H ₂ shipped imports	29	83
H ₂ pipeline imports	0	316
Curtailed H ₂ demand	52	294
H ₂ demand for power production	2	77
Total H₂ demand	620	1,929

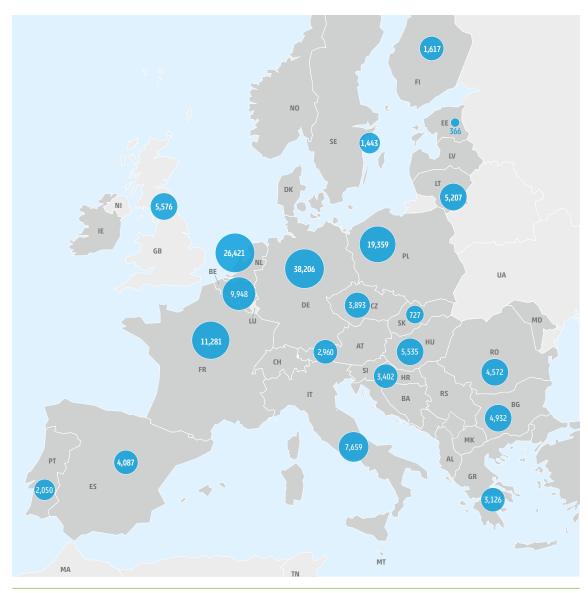

Table 23: Supply and demand balance in the PCI/PMI hydrogen infrastructure level in 2030 and 2040 for reference weather year (unit: TWh/y).

Figure 23: Distribution of electrolytic hydrogen production per country in the PCI/PMI hydrogen infrastructure level in 2040 for reference weather year (unit: GWh/y).

Figure 23 shows the hydrogen production via electrolysis in the different European countries for the PCI/PMI hydrogen infrastructure level in the 2040 assessment. European electrolytic production significantly increased compared to 2030 in most European countries. The countries with the highest electrolytic hydrogen production are: Spain, Germany, Finland, France and Sweden. Some countries have more than one source of electrolytic hydrogen production. This is related to the intra-country assumptions that are detailed in the description of the reference weather year in section 6.1.1.

Figure 24 shows the distribution of hydrogen production from natural gas in 2040. There is a reduction in hydrogen production from natural gas compared to 2030 as presented in Table 23. This reduction is explained by i) the 50 % reduction in the installed capacities for hydrogen production from natural gas as defined in the TYNDP 2024 NT+ scenario, ii) the higher electrolytic production as well as iii) the availability of new hydrogen supplies through imports from North Africa, Norway, Ukraine, and via terminals.

Figure 24: Distribution of hydrogen production from natural gas in the PCI/PMI hydrogen infrastructure level in 2040 for reference weather year (unit: GWh/y).

Country	H ₂ Production via electrolysis	H ₂ Production using natural gas	H ₂ extra-EU imports by pipeline & ship	H₂ demand
AT	13,650	2,960	0	45,203
BE	7,868	9,948	35,748	85,036
BG	357	4,932	0	12,712
CZ	5,736	3,893	0	2,614
CY	0	0	0	46,404
DE	171,226	38,206	130,262	549,465
DK	42,938	0	0	31,337
EE	0	366	0	3,128
ES	190,237	4,087	17,505	156,348
FI	168,858	1,617	0	85,318
FR	112,484	11,281	7,429	166,472
GR	22,138	3,126	0	38,538
HR	2,958	3,402	0	8,168
HU	3,739	5,535	0	26,496
IE	13,214	0	0	14,439
IT	24,950	7,659	144,115	127,210
LT	14,292	5,207	0	22,242
LU	378	0	0	9,772
LV	0	0	0	4,042
MT	0	0	0	1,475
NL	78,368	26,421	30,469	128,848
PL	17,061	19,359	0	133,930
PT	13,751	2,050	0	19,628
RO	3,103	4,572	0	37,722
SE	84,689	1,443	0	71,263
SI	2,681	0	0	5,822
SK	0	727	34,591	9,549
UK	82,678	5,576	0	91,428

Table 24: Distribution of hydrogen production, imported hydrogen and demand per country in the PCI/PMI hydrogen infrastructure level in 2040 for reference weather year (unit: GWh/y).

Considering the supply and demand distribution presented in Table 24, the intra-EU transport corridors that already emerged in 2030, connecting the electrolytic hydrogen supply produced in the Iberian Peninsula and in the Nordic countries with the main European hydrogen hub in Germany, are even more needed in the 2040 PCI/PMI assessment due to the increase of hydrogen demand between 2030 and 2040. The Iberian corridor is thereby supported by imports from Morocco.

In addition, as presented in Figure 25, other intra-EU transport corridors emerge, mainly driven by the availability of extra-EU supplies in the 2040 assessment. Namely, the new corridors identified for 2040 are:

- ▲ North African corridor, transporting Algerian supplies to Italy, Austria, Germany and other countries.
- Norwegian corridor, transporting Norwegian supplies to Germany.
- Ukrainian corridor, transporting Ukrainian supplies to Slovakia and Czechia and other countries.

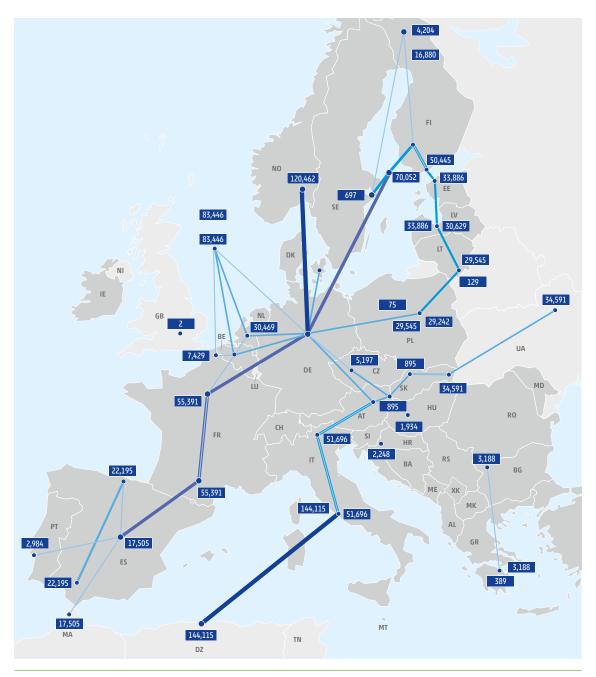


Figure 25: Grid flows* in the PCI/PMI hydrogen infrastructure level in 2040 for reference weather year (unit: GWh/y).

In the 2040 PCI/PMI hydrogen infrastructure level assessment for the reference weather year, countries can be grouped in four different categories according to their supply-demand balance on a yearly basis:

 Countries which export more than they import: Sweden, Finland, Denmark, Spain and Greece.

- **2. Countries that import more than they export:** Poland, Bulgaria and Portugal.
- 3. Transit countries that import more than they consume: Italy, Germany, Slovakia, Austria, Estonia. Latvia. Lithuania. France and Netherlands.
- **4. Isolated countries:** the United Kingdom, Ireland, Luxembourg, Hungary, Romania, Slovenia, Croatia, Malta, Cyprus, Switzerland¹⁴ and the cluster Bulgaria-Greece.

^{*} Grid flows refer to simulations results and do not intend to represent how the European infrastructure is expected to evolve in the simulated years, being just outcomes of a modelling tool. The values are provided as a table in Annex II and as monthly values in Annex III).

¹⁴ IGI report does not consider hydrogen demand in Switzerland (based on TYNDP 2024 Draft Scenario report). However, there is no hydrogen infrastructure connecting Switzerland to any of its European neighbouring countries in the assessed infrastructure levels.

While on a yearly basis some countries are net exporters and some countries are net importers, net exporters may be relying on net imports during certain shorter periods of time and net importers may be providing net exports during certain shorter

periods of time. This can result in bidirectional flows at interconnections. This situation is caused by the seasonality of electrolytic hydrogen production and to some extent by the seasonality of hydrogen demand.

High-level results for stressful weather year

The overall yearly supply-demand balance for the PCI/PMI hydrogen infrastructure level in 2040 for the stressful weather year is presented in Table 25. As detailed in Table 25, electrolytic hydrogen production is the main source of hydrogen in Europe but it is reduced in comparison with the reference weather year. To compensate the reduction of electrolytic hydrogen production, hydrogen import

sources, both via ship and pipeline, increase in comparison with the reference weather year. The imports via terminals increase by 15 %. The consideration of a stressful weather year leads to an approximate rate of 18 % of hydrogen demand curtailment at European level. This represents an increase by 3 % in comparison with the reference weather year.

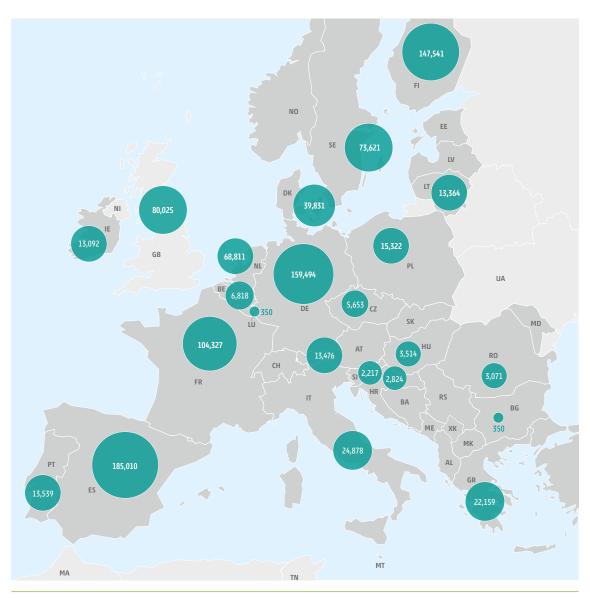
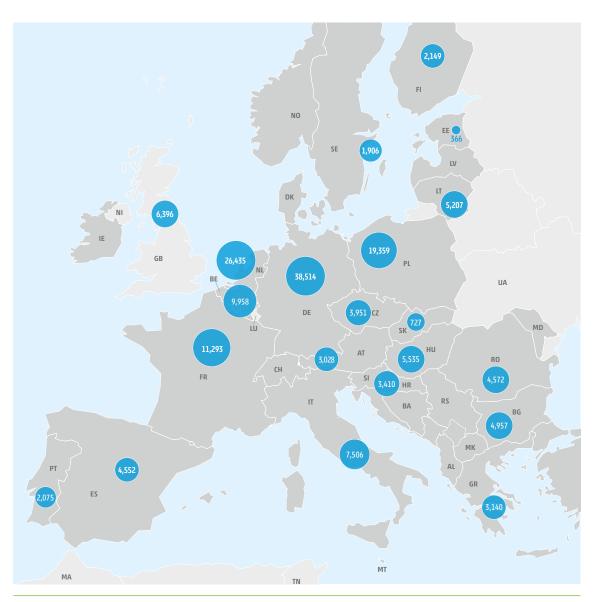

Yearly hydrogen supply-demand balance	PCI/PMI IL 2030	PCI/PMI IL 2040
H ₂ produced via electrolysis	270	1,000
H ₂ produced using natural gas	245	165
H ₂ shipped imports	36	96
H ₂ pipeline imports	0	320
Curtailed H ₂ demand	69	352
H ₂ demand for power production	2	75
Total H₂ demand	619	1,933

Table 25: Supply and demand balance in the PCI/PMI hydrogen infrastructure level in 2030 and 2040 for stressful weather year (unit: TWh/y).


Figure 26 shows the distribution of hydrogen production via electrolysis in the different European countries for the PCI/PMI hydrogen infrastructure level in the 2040 assessment under stressful weather conditions. Despite the overall reduction of electrolytic hydrogen production, under stressful weather conditions the countries with the highest electrolytic hydrogen production follow the same

distribution as in the PCI/PMI 2040 assessment for the reference weather year (see Figure 23). Some countries have more than one source of electrolytic hydrogen production. This is related to the intra-country assumptions that are detailed in the description of the reference weather year in section 6.1.1.

Figure 26: Distribution of hydrogen production via electrolysis in the PCI/PMI hydrogen infrastructure level in 2040 for stressful weather year (unit: GWh/y).

The distribution of hydrogen production produced from natural gas in the different European countries for the PCI/PMI hydrogen infrastructure level in the 2040 assessment under stressful weather conditions is presented in Figure 27. No significant change was observed in comparison to the reference weather year presented in Figure 24.

Figure 27: Distribution of hydrogen production from natural gas in the PCI/PMI hydrogen infrastructure level in 2040 for stressful weather year (unit: GWh/y).

Country	H ₂ Production via electrolysis	H ₂ Production using natural gas	H ₂ extra-EU imports by pipeline & ship	H ₂ demand
AT	13,476	3,028	0	45,867
BE	6,818	9,958	40,783	85,423
BG	350	4,957	0	12,712
CZ	5,653	3,951	0	2,614
CY	0	0	0	46,404
DE	159,494	38,514	131,595	548,503
DK	39,831	0	0	31,337
EE	0	366	0	3,128
ES	185,010	4,552	18,433	156,348
FI	147,541	2,149	0	85,318
FR	104,327	11,293	8,815	166,517
GR	22,159	3,140	0	38,538
HR	2,824	3,410	0	8,168
HU	3,514	5,535	0	26,496
IE	13,092	0	0	14,439
IT	24,878	7,506	144,927	127,210
LT	13,364	5,207	0	22,242
LU	350	0	0	9,772
LV	0	0	0	4,042
MT	0	0	0	1,475
NL	68,811	26,435	35,523	126,090
PL	15,322	19,359	0	134,041
PT	13,539	2,075	0	19,628
RO	3,071	4,572	0	37,722
SE	73,621	1,906	0	71,263
SI	2,217	0	0	5,822
SK	0	727	35,843	9,549
UK	80,025	6,396	0	91,428

Table 26: Distribution of hydrogen production, imported hydrogen and demand per country in the PCI/PMI hydrogen infrastructure level in 2040 for stressful weather year (unit: GWh/y).

As presented in Figure 28 and Table 26 the flows through the two corridors connecting electrolytic supply with German and European demand reduced in the stressful weather year assessment, driven by the overall reduction of available RES. This affects the Iberian and the Nordic corridor. The flows through intra-EU transport corridors that are supplied by Norway, North Africa and Ukraine therefore increase if possible.

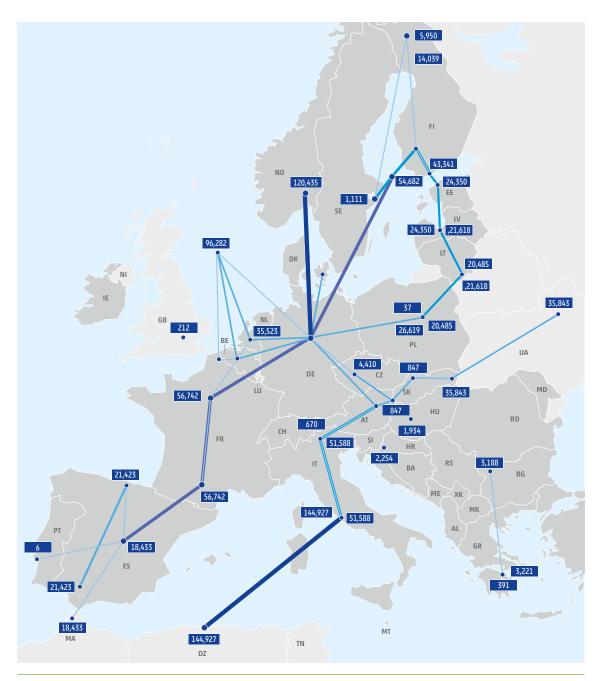


Figure 28: Grid flows* in the PCI/PMI hydrogen infrastructure level in 2040 for stressful weather year (unit: GWh/y).

When comparing Figure 28 with Figure 25, most European countries show the same behaviour in terms of being a net exporter, a net importer or a transit country for the stressful as for the reference weather year. As expected under stressful climatic conditions, corridors based mainly on electrolytic production will see their exporting role slightly reduced due to the lower availability of RES (i.e., Iberian and Nordic corridors).

Consequently, also the transit through countries along these routes is reduced (e.g., transit through Baltic countries). On the contrary, both liquid imports and import corridors via pipeline, will maximize their flows to compensate the reduction on European electrolytic supplies.

^{*} Grid flows refer to simulations results and do not intend to represent how the European infrastructure is expected to evolve in the simulated years, being just outcomes of a modelling tool. The values are provided as a table in Annex II and as monthly values in Annex III).

7.1.1.1 IGI INDICATOR 1: HYDROGEN MARKET CLEARING PRICE SPREADS FOR REFERENCE WEATHER YEAR

Overview: Hydrogen market clearing prices per country

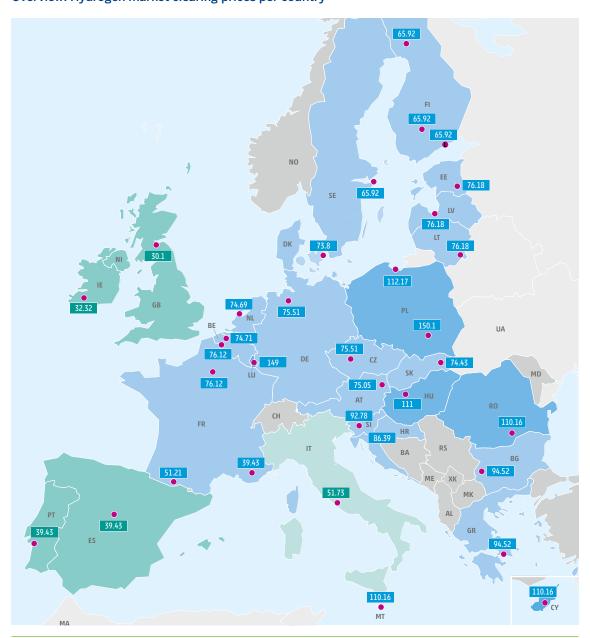


Figure 29: Average of the hourly hydrogen market clearing prices per country in the PCI/PMI hydrogen infrastructure level in 2040 (unit: €/MWh).

The increase of hydrogen demand considered in the 2040 assessment leads to a general increase of average hydrogen market clearing prices in Europe when compared to the 2030 assessment, as represented in Figure 29. This increase is connected to the higher rates of curtailed demand across Europe, and to a lesser extent to the use of more expensive hydrogen import sources to satisfy the hydrogen demand in the different European countries. In South-Eastern Europe, where most of the countries have limited connection to the European hydrogen network and rely on the local hydrogen

production, the increase of hydrogen prices is more pronounced. This steep increase is explained by the increase of demand curtailment, as well as the use of more expensive hydrogen sources to satisfy hydrogen demand in order to avoid curtailment. As presented in Figure 29, this is particularly important as these countries are isolated in the PCI/PMI hydrogen infrastructure level. In addition, the cost of hydrogen production from natural gas increases significantly in the 2040 assessment due to the increase of the ETS price as stipulated in the TYNDP 2024 NT+ scenario.

Despite the increase of hydrogen market clearing prices in many countries in the 2040 assessment, there are other countries or areas where the average hydrogen market clearing price decreases compared to 2030:

- Due to higher availability of electrolytic hydrogen production: Spain, Portugal, France-South region, Finland, Sweden, the United Kingdom, Ireland
- Due to new interconnections:
 - Italy, mainly driven by the availability of North African hydrogen supplies.
 - Slovakia, mainly driven by the connection to the European hydrogen network and the availability of Ukrainian hydrogen supplies.

The price formation in the DHEM is based on the merit order of hydrogen production (see section 4.1). Several price groups stand out, while a signification correlation is understood here as a correlation above 0.7:

- 1. Portugal, Spain, France-South region: Portugal and Spain are producers and net exporters of electrolytic hydrogen from RES to other countries. While the France-South region is sufficiently connected to the Iberian peninsula, price spreads appear with other groups of (regions of) countries due to an internal bottleneck in France. The prices in this group show no significant correlation with the prices in other groups.
- **2. France-Southwest region:** The prices in this group show no significant correlation with the prices in other groups. The group exists due to bottlenecks within France.
- **3. France-North region:** The prices in this group show significant correlations with prices in groups 4, 5, 6, 7, 11, 12. The group exists due to bottlenecks within France.
- **4. France, Belgium-Mons region:** The prices in this group show significant correlations with prices in groups 3, 5, 7, 10, 11, 12. The group exists due to bottlenecks within France and Belgium.
- **5. Belgium, the Netherlands:** The prices in this group show significant correlations with prices in groups 3, 4, 7, 10, 11, 12. The group exists due to bottlenecks with France and Germany.
- **6. Denmark:** The prices in this group show significant correlations with prices in groups 3, 4, 5, 7, 10, 11, 12. The group exists due to a bottleneck from Denmark to Germany.

- **7. Germany, Czechia, Austria:** Well interconnected countries. The prices in this group show significant correlations with prices in groups 3, 4, 5, 6, 10, 11, 12.
- **8. Italy:** While being connected to Austria, the bottleneck between Italy and Austria is so dominant that Italy has no significant price correlation with any other (region of a) country.
- 9. Poland-North region: While being connected to Germany and Lithuania (via the Nordic-Baltic Hydrogen Corridor), the Poland-North region has no significant price correlation with any other (region of a) country due to the bottlenecks associated with both connections.
- **10. Sweden, Finland:** The prices in this group show significant correlations with prices in groups 3, 4, 5, 6, 7, 11, 12. The group exists due to a bottleneck between Sweden/Finland and Germany and a bottleneck between Finland and Estonia.
- **11. Estonia, Latvia, Lithuania:** The prices in this group show significant correlations with prices in groups 3, 4, 5, 6, 7, 10, 12. The group exists due to a bottleneck between Finland and Estonia as well as bottlenecks from Lithuania to Poland and within Poland.
- **12. Slovakia:** The prices in this group show significant correlations with prices in groups 3, 4, 5, 6, 7, 10, 11. The group exists due to a bottleneck from Austria to Slovakia and a bottleneck from Slovakia to Czechia.
- **13. Ireland, the United Kingdom:** Isolated countries without significant price correlations but with average prices below 100 €/MWh.
- **14. Greece, Bulgaria:** Countries showing significant price correlation, jointly isolated from the other European countries.
- **15. Romania, Hungary:** The group exists due to a bottleneck between Slovakia and Hungary (and no connection between Romania and Bulgaria).
- 16. Croatia (only connected to Bosnia), Slovenia, Luxembourg, Cyprus, Malta, Poland-South region: Isolated countries without significant price correlations (except for Croatia and Slovenia due to a similar national hydrogen production constellation) and with average prices above 100 €/MWh.

The price correlations listed above are enabled by the infrastructure projects already considered in this hydrogen infrastructure level. However, price differences that led to the identification of the groups listed above are not necessarily describing an infrastructure gap. For this identification of infrastructure gaps, the thresholds of IGI indicator 1 are used

The IGI indicator 1 reveals in the 2040 assessment of the PCI/PMI hydrogen infrastructure level an increase of the price spreads at many European borders when compared to the 2030 assessment.

At the following borders, IGI indicator 1 identified additional significant price spreads in comparison with the 2030 assessment due to bottlenecks:

- ✓ Finland/Sweden and Germany: With the increase of electrolytic hydrogen production in Finland and Sweden, market clearing prices are reduced in these countries and the utilisation of the transport route to Germany increases. Thereby, the interconnection acts as a bottleneck.
- Finland and Estonia: With the increase of electrolytic hydrogen production in Finland, the utilisation of the interconnection between Finland and Estonia increases. Thereby, the interconnection acts as a bottleneck.
- ✓ Italy and Austria (and France and Germany): The availability of Algerian imports significantly increases the utilization of the Italy-Austria-Germany route. Thereby, the interconnection between Italy and Austria acts as a bottleneck. Besides, the hydrogen market clearing price spread between Italy on the one side and Germany or France on the other side is increasing over the threshold. No direct connection between Italy and Germany or France is available.
- Germany and Poland-North region: The net demand increase in the Poland-North region increases the utilisation of the interconnection between them. Thereby, the interconnection acts as a bottleneck.
- ▲ Lithuania and Poland-North region: The net demand increase in the Poland-North region increases the utilisation of the interconnection between them (via the Nordic-Baltic Hydrogen Corridor). Thereby, the interconnection acts as a bottleneck.

In the 2040 PCI/PMI assessment, there are some borders where the price spread has decreased compared to the 2030 assessment. At the following borders, the IGI indicator 1 therefore does not identify a significant price spread anymore:

Slovakia, Austria, Czechia: The connection of Slovakia in the 2040 PCI/PMI hydrogen infrastructure level to Austria and Czechia allows the market clearing prices to converge in these countries.

Countries and regions that are isolated in 2040 in the PCI/PMI hydrogen infrastructure level, such as Hungary, Romania, cluster Greece-Bulgaria, Slovenia, Croatia, Luxembourg, Poland South, France South West, Ireland, the United Kingdom, Malta and Cyprus, remain showing significant price spreads with their neighbouring countries and regions, as identified by IGI indicator 1 in Table 27.

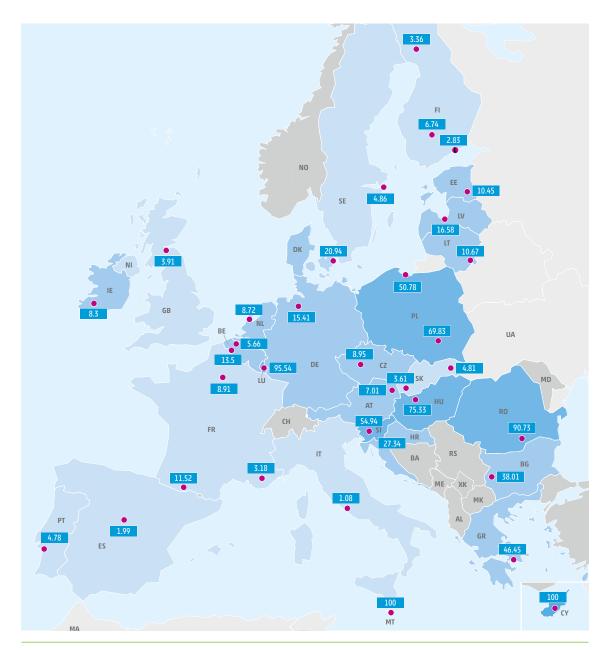

Border	Threshold 1: Absolute average hourly hydrogen market clearing price spread above 4 €/MWh (number of days)	Threshold 2: More than 40 days with hydrogen market clearing price spread above 20 €/MWh (number of days)
DEh ₂ -DKh ₂	21	140
DEh ₂ -FIh ₂	16	101
DEh ₂ -ITh ₂	29	190
DEh ₂ -PLh ₂ N	50	274
DEh ₂ -PLh ₂ S	100	325
DEh ₂ -SEh ₂	16	101
Flh ₂ -EEh ₂	13	88
FRh ₂ -FRh ₂ S	46	283
FRh ₂ -FRh ₂ SW	31	197
FRh ₂ -ITh ₂	30	197
FRh ₂ S-FRh ₂ SW	29	132
HUh ₂ -ATh ₂	51	278
HUh ₂ -HRh ₂	32	205
HUh ₂ -SKh ₂ E	51	277
ITh ₂ -ATh ₂	29	188
ITh ₂ -HRh ₂	50	282
LTh ₂ -PLh ₂ N	49	270
NLh ₂ -UKh ₂	56	305
PLh ₂ N-PLh ₂ S	50	60
PLh ₂ S-CZh ₂	100	325
PLh ₂ S-SKh ₂ E	101	325
ROh ₂ -BGh ₂	22	127
SIh ₂ -HRh ₂	11	42
SKh ₂ E-PLh ₂ S	101	325
UKh ₂ -BEh ₂	56	305
UKh ₂ -IEh ₂	25	133

Table 27: List of borders in the PCI/PMI hydrogen infrastructure level that exceed (at least one of) the thresholds defined for IGI indicator 1 in 2040 (unit: days).

7.1.1.2 IGI INDICATOR 2.1: HYDROGEN DEMAND CURTAILMENT FOR REFERENCE WEATHER YEAR

As explained in section 4.2, this IGI indicator assesses infrastructure gaps by quantifying hydrogen demand curtailments at individual nodes during the reference weather year, assuming no disruptions of infrastructures or of supply sources. It involves a multi-step simulation process integrating DHEM and DGM¹⁵ outputs to evaluate the combined curtailments across nodes. The assessment is performed for the PCI/PMI hydrogen infrastructure level in 2040, showing the effects of matured infrastructure in 2040.

Figure 30 and Table 28 show yearly average curtailment rates of hydrogen demand in the Zone 2 nodes of different European countries. For countries where the hydrogen market is divided into several sub-zones (i.e., nodes), the curtailment rate in the different sub-zones is presented. The yearly average hydrogen curtailment rates are thereby colour-coded in the map to indicate levels relative to the set threshold: blue signifies curtailment above the threshold, while green represents rates that are not above it.

Figure 30: Yearly average hydrogen demand curtailment rate at country or node level in the PCI/PMI hydrogen infrastructure level in 2040 for reference year (unit: %).

 $^{15\,\,}$ This draft TYNDP 2024 IGI report only includes the simulation results of the DHEM.

7.01
5.66
13.5
38.01
100
8.95
15.41
20.94
10.45
1.99
6.74
3.36
2.83
8.91
3.18
11.52
46.45
27.34

Nede	Domand austailment rate (0/)
Node	Demand curtailment rate (%)
HUh ₂	75.33
IEh ₂	8.3
ITh ₂	1.08
LTh ₂	10.67
LUh ₂	95.54
LVh ₂	16.58
MTh ₂	100
NLh ₂	8.72
PLh ₂ N	50.78
PLh ₂ S	69.83
PTh ₂	4.78
ROh ₂	90.73
SEh ₂	4.86
Slh ₂	54.94
SKh ₂ E	3.61
SKh ₂ W	4.81
UKh ₂	3.91

Table 28: Yearly average hydrogen demand curtailment rate at country/sub-zone level in the PCI/PMI hydrogen infrastructure level in 2040 for reference weather year (unit: %).

All European countries and regions overshoot the threshold of 0 % of IGI indicator 2.1 in the PCI/PMI hydrogen infrastructure level in 2040. However, differences in the hydrogen curtailment rates between nodes are related to the level of infrastructure development and supply availability. In comparison with IGI indicator 1, this IGI indicator focusses on the availability of supplies.

As detailed in Table 28, (regions of) countries can be aggregated in different groups according to their average yearly hydrogen demand curtailment rates:

- 1. Rates below 5 %: Portugal, Spain, Italy, the United Kingdom, Sweden, Finland-North region, Finland-South region, France-South region, Slovakia-West region, Slovakia-East region.
- 2. Rates between 5 % and 20 %: Finland, Austria, Belgium, Belgium-Mons region, Czechia, Germany, Estonia, France, France-Southwest region, Ireland, Lithuania, Latvia, the Netherlands.
- **3. Rates between 20 % and 50 %:** Bulgaria, Denmark, Greece, Croatia.
- **4. Rates between 50 % and 100 %:** Slovenia, Romania, Poland-North region, Poland-South region, Hungary, Luxembourg.
- 5. Full curtailment of 100 %: Cyprus, Malta.

Without the infrastructure already considered in the hydrogen infrastructure level, the overall hydrogen demand curtailment would be higher.

Even though the threshold has been surpassed, countries and regions of group 1 exhibit hydrogen demand curtailment rates below 5 % average yearly curtailment rate, meaning that for a large share of the year their demand is fully covered. Portugal, Slovakia and the United Kingdom show decreased curtailment rates compared to the PCI/ PMI hydrogen infrastructure level assessment for 2030. This is particularly evident for Slovakia due to its connection to the European backbone and to Ukrainian hydrogen supplies in 2040. For the other countries and regions in this group, hydrogen curtailment rates increase with the general trend of increased hydrogen curtailment rates in 2040. The primary driver behind this increase is the rising demand for hydrogen within these individual countries, which surpasses the current capacity of available infrastructure. Despite advancements in PCI/ PMI hydrogen infrastructure level, the rapid growth in hydrogen consumption highlights the need for further investment and development to meet the increasing demand. This trend underlines the evolving challenges of balancing infrastructure enhancements with accelerating demand.

Group 2 of countries and regions also contains those that show decreased hydrogen curtailment rates, i.e., Austria, the Belgium-Mons region, Czechia, the France-Southwest region, Ireland, Lithuania, and Latvia. Additionally, countries such as Lithuania and France not only benefit from improved import infrastructure but also experience increased their electrolytic production in 2040, which further mitigates curtailment rates. These developments highlight the effectiveness of infrastructure expansion and technological advancements in reducing hydrogen demand curtailment. At the same time, there is slight increases of hydrogen curtailment rates in Germany, Finland and France caused by increases of hydrogen demand in 2040.

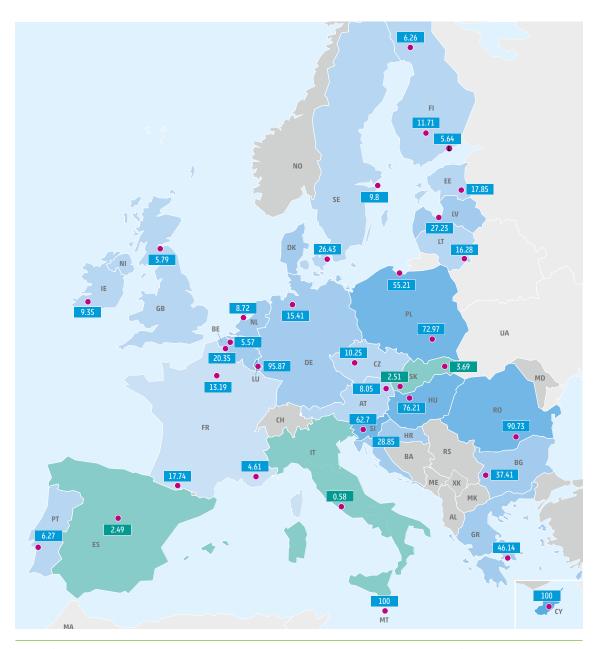
Group 3, comprising Bulgaria, Denmark, Greece and Croatia, shows demand curtailments greater than 20 % but below 50 %. Within this category, curtailment rates are observed to rise from 2030 to 2040, driven by the increase of hydrogen demand in these countries and limited cross-border interconnections. The growing demand outpaces infrastructure improvements, leaving national markets unable to fully satisfy their hydrogen demand.

Group 4, experiencing hydrogen demand curtailment rates exceeding 50 % but remaining below

100 %, includes Slovenia and Romania, which have managed to reduce their hydrogen curtailment rates compared to 2030 while remaining isolated. Slovenia achieves a notable reduction from 76.6 % to 54.9 %, whereas Romania shows only a marginal reduction of 0.2 %. Conversely, the Poland-North region, the Poland-South region and Hungary experience increases in hydrogen demand curtailment rates, as significant growth in national demand outstrips the available capacity of the PCI/PMI hydrogen infrastructure as well as hydrogen production options in 2040. Luxembourg remains as isolated in 2040 as in 2030 in the PCI/PMI hydrogen infrastructure level.

Finally, Malta and Cyprus, due to their geographically isolated locations, continue to experience a demand curtailment of 100 % at the PCI/PMI hydrogen infrastructure level in 2040. The absence of connections with broader European hydrogen infrastructure underscores the challenges faced by island nations in integrating into the continental hydrogen network.

In the Poland-North Region, France and Czechia, on top of the curtailments observed in Zone 2 nodes as described in the paragraphs above, hydrogen demand curtailments can be observed in Zone 1 that increase during the winter months.



7.1.1.3 IGI INDICATOR 2.2: HYDROGEN DEMAND CURTAILMENT FOR STRESSFUL WEATHER YEAR

Threshold 1: A yearly average hydrogen demand curtailment rate of more than 3 %

Figure 31 and Table 29 show the yearly average hydrogen demand curtailment rates in the Zone 2 nodes of various European countries for 2040, simulated under a stressful weather year. This weather scenario assumes adverse conditions, such as reduced wind and solar energy availability, which directly impacts hydrogen production. For countries

with hydrogen markets divided into multiple subzones (i.e., nodes), curtailment rates are depicted individually for each sub-zone on the map. The yearly average hydrogen curtailment rates are thereby colour-coded to indicate levels relative to the set threshold 1: blue signifies curtailment above the threshold, while green represents rates that are not.

Figure 31: Yearly average hydrogen demand curtailment rate at country or node level in the PCI/PMI hydrogen infrastructure level in 2040 for stressful weather year (unit: %).

Node	Demand curtailment rate (%)
ATh ₂	8.05
BEh ₂	5.57
BEH ₂ Mo	20.35
BGh ₂	37.41
CYh ₂	100.00
CZh ₂	10.25
DEh ₂	20.98
DKh ₂	26.43
EEh ₂	17.85
ESh ₂	2.49
Flh ₂	11.71
FIh ₂ N	6.26
FIh ₂ S	5.64
FRh ₂	13.19
FRh ₂ S	4.61
FRh ₂ SW	17.74
GRh ₂	46.14
HRh ₂	28.85

Node	Demand curtailment rate (%)
HUh ₂	76.21
IEh ₂	9.35
ITh ₂	0.58
LTh ₂	16.28
LUh ₂	95.87
LVh ₂	27.23
MTh ₂	100.00
NLh ₂	10.85
PLh ₂ N	55.21
PLh ₂ S	72.97
PTh ₂	6.27
ROh ₂	90.73
SEh ₂	9.80
Slh ₂	62.70
SKh ₂ E	2.51
SKh ₂ W	3.69
UKh ₂	5.79

Table 29: Yearly average hydrogen demand curtailment rate at country/sub-zone level in the PCI/PMI hydrogen infrastructure level in 2040 for stressful weather year (unit: %).

Countries are grouped into five categories based on their average yearly hydrogen demand curtailment rates:

- **1. Rates below 3 %:** Italy, Spain, Slovakia-East region.
- 2. Rates between 3 % and 20 %: Belgium, Slovakia-West region, Portugal, Sweden, Ireland, Finland, Estonia, the Netherlands, Austria, Czechia, Lithuania, France, France-North region, France-South region, France-Southwest region, Latvia
- 3. Rates above 20 % and below 50 %: Belgium-Mons region, Greece, Denmark, Croatia, Germany, Bulgaria.
- **4. Rates above 50 % and below 100 %:** Slovenia, Romania, Luxembourg, Poland-North region, Poland-South region, Hungary.
- 5. Full curtailment of 100 %: Cyprus, Malta.

Countries and regions with hydrogen curtailment rates below 3 % in 2040 include Italy, Spain, Slovakia East Region. These countries and regions demonstrate remarkable resilience even under stressful weather conditions. For instance, Spain achieves a low curtailment rate of 2.5 %, owing to its robust hydrogen production and storage system. The Slovakia-East region, at 2.5 %, benefits from

enhanced import capabilities from Ukraine that effectively mitigates supply disruptions during adverse weather.

Group 2 includes the Belgium, Slovakia-West region, Portugal, Sweden, Ireland, Finland, Estonia, the Netherlands, Austria, Czechia, Lithuania, France, France-North region, France-South region, France-Southwest region, Latvia. Their curtailment rates exceed the 3 % threshold but remain below 20 %. Slovakia-West, for example, reports a curtailment rate of 3.7 %, reflecting its reliance on imports to bridge domestic production gaps. Similarly, Finland's regions show slight variations, driven by reduced wind and hydropower outputs during the stressful weather year.

Belgium-Mons region, Greece, Denmark, Croatia, Germany, Bulgaria are part of group 3, exhibiting more significant curtailment challenges. Greece, with a curtailment rate of 46.1%, struggles due to its limited domestic production and dependency on solar energy, which is significantly affected by the stressful weather year. The Belgium-Mons region, at 20.4%, reflects the localised nature of its hydrogen supply challenges, as this region operates as a distinct hydrogen cluster. Germany, with a hydrogen demand curtailment rate of 21.4%, faces increasing hydrogen demand in its industrial and

transportation sectors, exacerbated by reduced renewable output in a stressful weather year.

Countries in group 4 experience severe curtailment challenges under adverse weather conditions. Slovenia's hydrogen demand curtailment rate improves slightly from 76.6 % in 2030 to 62.7 % in 2040 but remains high due to inadequate infrastructure and limited renewable energy supply. Poland shows a clear regional disparity, with the Southern region exhibiting a higher curtailment rate (73 %) compared to the Northern region (55.2 %).

Hungary, at 76.2 %, faces significant constraints driven by its growing hydrogen demand and insufficient cross-border capacity to meet needs during stressful weather periods. Luxembourg's hydrogen demand curtailment rate of 95.9 % underscores its continued need for connection and lack of domestic production, which are further impacted during adverse weather.

Malta and Cyprus experience full curtailment of 100 % in 2040, as these countries remain entirely isolated and have no hydrogen production assets.

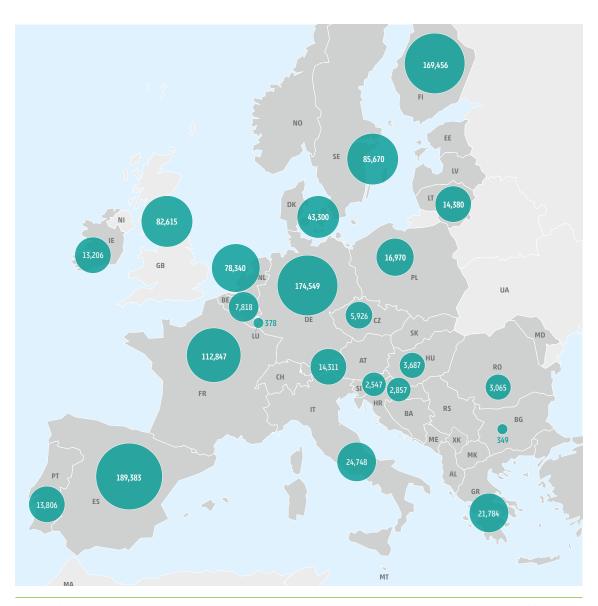
Threshold 2: hydrogen demand curtailment rate of more than 5 % for at least one month per year

All the countries and regions that exceed threshold 1 also exceeded threshold 2.

7.1.2 ADVANCED HYDROGEN INFRASTRUCTURE LEVEL

High-level results for reference weather year

The overall yearly supply-demand balance for the advanced hydrogen infrastructure level in 2040 is presented in Table 30. As detailed in Table 30, overall hydrogen demand more than triples compared to the 2030 hydrogen demand level, leading to a yearly hydrogen demand of 1936 TWh/y in Europe.


Whereas the overall foreseen hydrogen demand does not vary between the analysed infrastructure levels, there are significant differences between them in terms of i) hydrogen demand curtailment and ii) availability of the different supplies.

The advanced infrastructure level shows a lower overall hydrogen demand curtailment rate in Europe. The reduction in the demand curtailment in this infrastructure level is related to the higher availability of hydrogen shipped imports and the maximization of the use of pipeline imports, more specifically Norwegian, North African and Ukrainian imports. The maximization of imports is possible thanks to the consideration of non-PCI/PMI advanced infrastructure that enables transport to countries that were isolated in the PCI/PMI infrastructure level, through the SK/HU/RO hydrogen corridor, as well as, the maximization of national production (both from electrolytic and natural-gas based) through a higher utilization of PCI/PMI infrastructure.

Despite i) the infrastructure development foreseen in the Advanced hydrogen infrastructure level for 2040 (see section 3.2), ii) the increase of extra-EU supply potentials via terminals and pipelines, and iii) the significant increase of electrolytic hydrogen production (by approximately 250 % compared to 2030), this is not sufficient to satisfy the hydrogen demand in many European countries and therefore, overall hydrogen demand curtailment rises compared to the 2030 values leading to an average hydrogen curtailment of 12 % in Europe. This is lower than the 15 % average hydrogen demand curtailment in Europe in the PCI/PMI hydrogen infrastructure level. This reduction is related to the higher availability of hydrogen terminals and the maximization of the use of pipeline imports from Norway, North Africa and Ukraine. The maximization of imports is possible thanks to the consideration of non-PCI/PMI advanced infrastructure that enables transport to countries that were isolated in the PCI/ PMI hydrogen infrastructure level. This relates to the transit route through Slovakia, Hungary and Romania as well as the maximisation of national hydrogen production enabled by increased capacities.

Yearly hydrogen supply-demand balance	Advanced IL 2030	Advanced IL 2040
H ₂ produced via electrolysis	304	1,080
H ₂ produced using natural gas	224	168
H ₂ shipped imports	24	110
H ₂ pipeline imports	42	335
Curtailed H ₂ demand	27	237
H ₂ demand for power production	2	77
Total H ₂ demand	620	1,929

Table 30: Supply and demand balance in the Advanced hydrogen infrastructure level in 2030 and 2040 for reference weather year (unit: TWh/y).

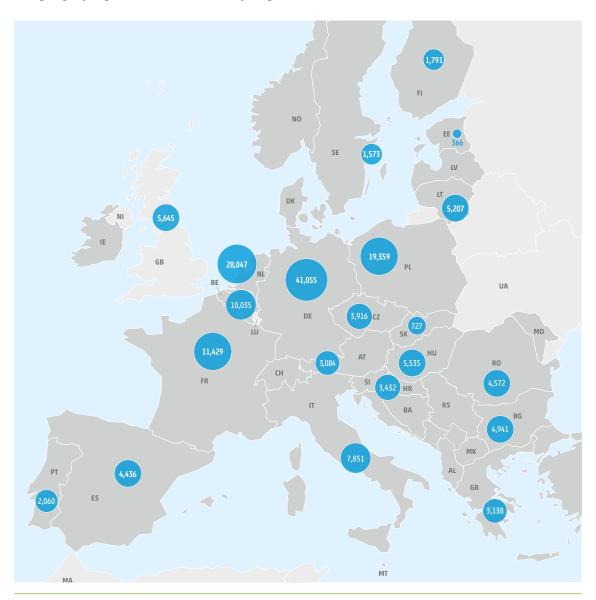


Figure 32: Distribution of electrolytic hydrogen production in the Advanced hydrogen infrastructure level in 2040 for reference weather year (unit: GWh/y).

Figure 32 shows the electrolytic hydrogen production in the different European countries for the Advanced hydrogen infrastructure level in the 2040 assessment. The European electrolytic production significantly increased compared to 2030 in most European countries. The electrolytic production slightly varies country to country in comparison to the PCI/PMI hydrogen infrastructure level, being slightly higher for the Advanced hydrogen

infrastructure level in 2040. However, the overall distribution across Europe is rather similar.

Figure 33 shows the distribution of hydrogen production from natural gas in 2040. There is a reduction in hydrogen production from natural gas compared to 2030. The reasons for this are explained in section 7.1.1.

Figure 33: Distribution of hydrogen production from natural gas in the Advanced hydrogen infrastructure level in 2040 for reference weather year (unit: GWh/y).

Country	H ₂ Production via electrolysis	H ₂ Production using natural gas	H ₂ extra-EU imports by pipeline & ship	H₂ demand
AT	14,311	3,084	0	44,764
BE	7,818	10,035	40,326	85,007
BG	349	4,941	0	12,712
CZ	5,926	3,916	0	2,614
CY	0	0	0	46,404
DE	174,549	41,055	145,961	549,452
DK	43,300	0	0	31,337
EE	0	366	0	3,128
ES	189,383	4,436	17,607	156,348
FI	169,456	1,791	0	85,318
FR	112,847	11,429	8,027	166,556
GR	21,784	3,138	0	38,538
HR	2,857	3,432	0	8,168
HU	3,687	5,535	0	26,496
IE	13,206	0	0	14,439
IT	24,748	7,851	148,174	127,210
LT	14,380	5,207	0	22,242
LU	378	0	0	9,772
LV	0	0	0	4,042
MT	0	0	0	1,475
NL	78,340	28,047	41,541	128,923
PL	16,970	19,359	6,439	133,926
PT	13,806	2,060	0	19,628
RO	3,065	4,572	0	37,722
SE	85,670	1,573	0	71,263
SI	2,547	0	0	5,822
SK	0	727	38,184	9,549
UK	82,615	5,645	0	91,428

Table 31: Distribution of hydrogen production, imported hydrogen and demand per country in the advanced hydrogen infrastructure level in 2040 for reference weather year (unit: GWh/y).

Considering the supply and demand distribution presented in Table 31, the intra-EU transport corridors that already emerged in the 2030 assessment of the Advanced hydrogen infrastructure level as well as new supply corridors are even more needed in the 2040 assessment due to the increase of hydrogen demand between 2030 and 2040. These corridors are the Iberian and the Baltic corridors as well as the North African corridor with the main European hydrogen hub in Germany.

In addition, as presented in Figure 34, other intra-EU transport corridors emerge, mainly driven by the availability of extra-EU supplies in the 2040 assessment. Namely, the new corridors identified for 2040 are:

- Norwegian corridor, transporting Norwegian supplies to Germany.
- Ukrainian corridor, transporting Ukrainian supplies to Slovakia and Czechia and other countries.

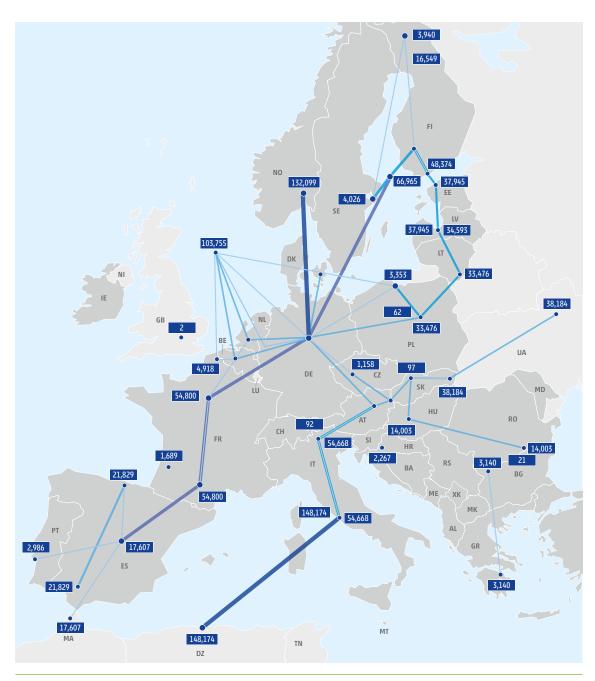


Figure 34: Grid flows* in the Advanced hydrogen infrastructure level in 2040 for reference weather year (unit: GWh/y).

^{*} Grid flows refer to simulations results and do not intend to represent how the European infrastructure is expected to evolve in the simulated years, being just outcomes of a modelling tool. The values are provided as a table in Annex II and as monthly values in Annex III).

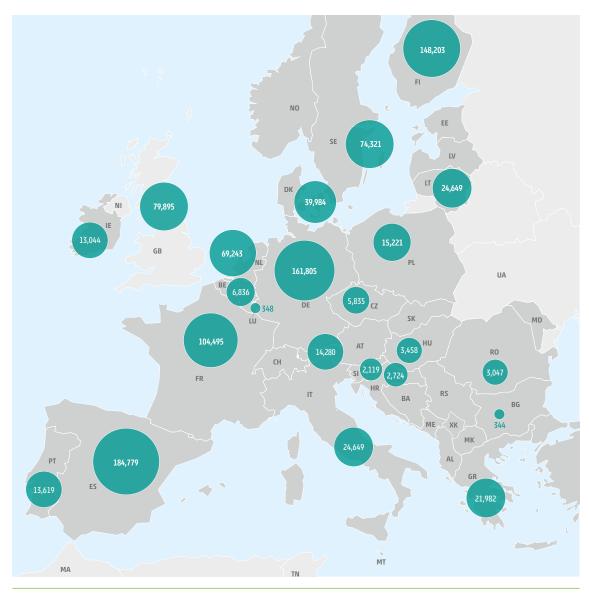
In the 2040 Advanced hydrogen infrastructure level assessment for the reference weather year, countries can be grouped in four different categories according to their supply-demand balance on a yearly basis:

- 1. Countries which export more than they import: Sweden, Finland, Denmark, the Netherlands, Spain, Portugal, Greece.
- **2. Countries that import more than they export:** Belgium, Poland, Czechia, Bulgaria and Romania.
- **3. Transit countries that import more than they consume:** Italy, Austria, Germany, Slovakia, Estonia, Latvia, Lithuania and France.

4. Isolated countries: the United Kingdom, Ireland, Luxembourg, Slovenia, Croatia, Malta, Cyprus, and the cluster Bulgaria-Greece.

With the exception of Hungary and Romania, that are integrated in the European hydrogen network through the Slovakia-Hungary-Romania hydrogen route, among the previously interconnected countries, the exporting/importing and transit roles did not change significantly in comparison to the PCI/PMI hydrogen infrastructure level assessment for 2040 (see Figure 28).

High-level results for stressful weather year


The overall yearly supply-demand balance for the Advanced hydrogen infrastructure level in 2040 for the stressful weather year is presented in Table 32. Electrolytic hydrogen production is the main source of hydrogen in Europe but it is reduced in comparison with the reference weather year. To compensate the reduction of electrolytic hydrogen production, hydrogen import sources, mainly via ship, increase in comparison with the reference weather year. The imports via terminals increase by 10 %. Pipeline imports however hardly increase as the effective import potential is limited by the import capacities

of import pipelines (see Table 5) and by EU-internal bottlenecks (see section 7.2.1), there already were high utilisations in the reference weather year, and there is missing hydrogen storage infrastructure.

The consideration of a stressful weather year leads to an approximate rate of 15 % of hydrogen demand curtailment at European level. This is an increase compared to the 12 % for the reference weather year with the Advanced hydrogen infrastructure level and a reduction compared to the 18 % for the stressful weather year with the PCI/PMI hydrogen infrastructure level.

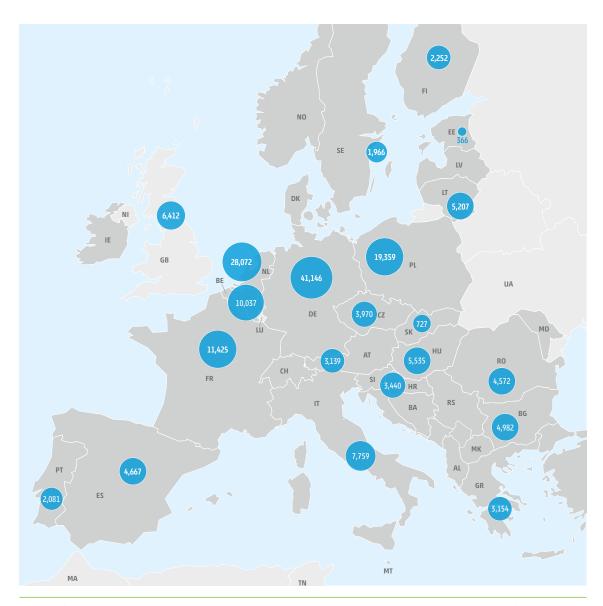

Yearly hydrogen supply-demand balance	Advanced IL 2030	Advanced IL 2040
H ₂ produced via electrolysis	265	1,002
H ₂ produced using natural gas	241	170
H ₂ shipped imports	35	121
H ₂ pipeline imports	42	336
Curtailed H ₂ demand	38	298
H ₂ demand for power production	2	75
Total H ₂ demand	620	1,927

Table 32: Supply and demand balance in the advanced infrastructure level in 2030 and 2040 for stressful weather year (unit: TWh/y).

Figure 35: Distribution of electrolytic hydrogen production from natural gas in the Advanced hydrogen infrastructure level in 2040 for stressful weather year (unit: GWh/y).

Figure 35 shows the distribution of electrolytic hydrogen production in the different European countries for the Advanced hydrogen infrastructure level in the 2040 assessment under stressful weather conditions. While keeping the same overall distribution as in the reference case, the electrolytic production was reduced all over Europe.

Figure 36: Distribution of hydrogen production from natural gas in the advanced infrastructure level in 2040 for stressful weather year (unit: GWh/y).

Figure 36 shows the distribution of natural-gas based hydrogen production in the different European countries for the Advanced hydrogen infrastructure level in the 2040 assessment under stressful weather conditions. No significant change was observed in comparison to the reference weather year presented in Figure 33.

Country	H₂ Production via electrolysis	H₂ Production using natural gas	H ₂ extra-EU imports by pipeline & ship	H₂ demand
AT	14,280	3,139	0	45,604
BE	6,836	10,037	43,781	85,407
BG	344	4,982	0	12,712
CZ	5,835	3,970	0	2,614
CY	0	0	0	46,404
DE	161,805	41,146	146,590	548,308
DK	39,984	0	0	31,337
EE	0	366	0	3,128
ES	184,779	4,667	18,432	156,348
FI	148,203	2,252	0	85,318
FR	104,495	11,425	9,456	166,517
GR	21,982	3,154	0	38,538
HR	2,724	3,440	0	8,168
HU	3,458	5,535	0	26,496
IE	13,044	0	0	14,439
IT	24,649	7,759	148,695	127,210
LT	13,441	5,207	0	22,242
LU	348	0	0	9,772
LV	0	0	0	4,042
MT	0	0	0	1,475
NL	69,243	28,072	47,369	126,569
PL	15,221	19,359	6,439	134,042
PT	13,619	2,081	0	19,628
RO	3,047	4,572	0	37,722
SE	74,321	1,966	0	71,263
SI	2,119	0	0	5,822
SK	0	727	38,527	9,549
UK	79,895	6,412	0	91,428

Table 33: Distribution of hydrogen production, imported hydrogen and demand per country in the Advanced hydrogen infrastructure level in 2040 for stressful weather year (unit: GWh/y).

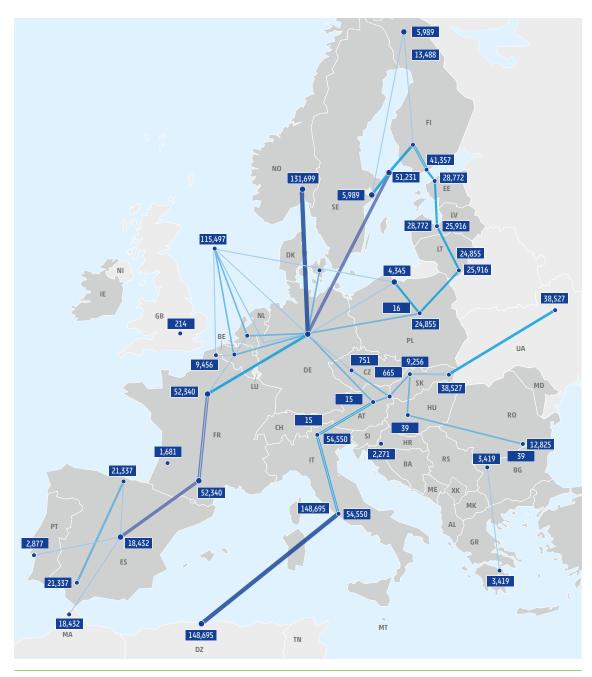
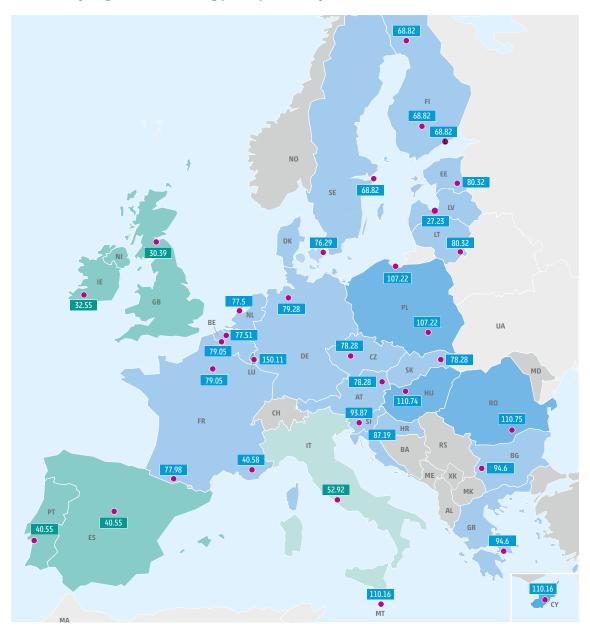


Figure 37: Grid flows* in the Advanced hydrogen infrastructure level in 2040 for stressful weather year (unit: GWh/y).


When comparing Figure 34 with Figure 37, most European countries show the same behaviour in terms of being a net exporter, a net importer or a transit country for the stressful as for the reference weather year. As expected under stressful climatic conditions, corridors based mainly on electrolytic production will see their exporting role slightly reduced due to the lower availability of RES (i.e., Iberian and Nordic corridors).

Consequently, also the transit through countries along these routes is reduced (e.g., transit through Baltic countries). On the contrary, countries with access to import terminals will increase imports via ship for own consumption and transit. In addition, imports via pipeline from Ukrainian and North African corridors slightly increase their imports up to the maximum capability, determined by supply potentials and infrastructure bottlenecks.

^{*} Grid flows refer to simulations results and do not intend to represent how the European infrastructure is expected to evolve in the simulated years, being just outcomes of a modelling tool. The values are provided as a table in Annex II and as monthly values in Annex III).

7.1.2.1 IGI INDICATOR 1: HYDROGEN MARKET CLEARING PRICE SPREADS FOR REFERENCE WEATHER YEAR

Overview: Hydrogen market clearing prices per country

Figure 38: Average of the hourly hydrogen market clearing prices per country in the Advanced hydrogen infrastructure level in 2040 (unit: €/MWh).

The increase of hydrogen demand considered in the 2040 assessment leads to a general increase of average hydrogen market clearing prices in Europe when compared to the 2030 assessment, as represented in Figure 38. The fundamental reasons are explained in section 7.1.1.1 The Advanced hydrogen infrastructure level considers a significant increase of import terminal capacities (see Table 6 in section 3.2), increasing the overall availability of shipped hydrogen imports.

Despite having lower overall hydrogen demand curtailment in the Advanced hydrogen infrastructure level, hydrogen market clearing prices in most European countries are higher than in the PCI/PMI hydrogen infrastructure level for 2040 and lower in some countries like Poland. This relates to the improved connectivity that enables more countries to compete for the hydrogen supply options, maximising the overall socio-economic welfare that includes (among others) the surplus of all the hydrogen consumers as well as the surplus of the hydrogen producers.

The price formation in the DHEM is based on the merit order of hydrogen production (see section 4.1). Several price groups stand out, while a signification correlation is understood here as a correlation above 0.7:

- 1. Portugal, Spain, France-South region: Portugal and Spain are producers and net exporters of electrolytic hydrogen from RES to other countries. While the France-South region is sufficiently connected to the Iberian peninsula, price spreads appear with other groups of (regions of) countries due to an internal bottleneck in France. The prices in this group show no significant correlation with the prices in other groups.
- **2. France-Southwest region:** The prices in this group show no significant correlation with the prices in other groups. The group exists due to bottlenecks within France.
- **3. France-North region:** The prices in this group show significant correlations with prices in groups 4, 5, 6, 7, 11. The group exists due to bottlenecks within France.
- **4. France, Belgium-Mons region:** The prices in this group show significant correlations with prices in groups 3, 5, 6, 7, 10, 11. The group exists due to bottlenecks within France and Belgium.
- **5. Belgium, the Netherlands:** The prices in this group show significant correlations with prices in groups 3, 4, 6, 7, 10, 11. The group exists due to bottlenecks with France and Germany.
- **6. Denmark:** The prices in this group show significant correlations with prices in groups 4, 5, 7, 10, 11. The group exists due to a bottleneck from Denmark to Germany.
- 7. Germany, Czechia, Austria, Slovakia-East region, Slovakia-West region: The group grew by Slovakia-East and Slovakia-West regions in comparison with the PCI/PMI hydrogen infrastructure level. The prices in this group show significant correlations with prices in groups 3, 4, 5, 6, 10, 11. The group exists due to bottlenecks from France to Germany, from Belgium to Germany, from Denmark to Germany, from Italy to Austria, from Slovakia to Hungary, from Germany to Finland and Sweden, and from Germany to Poland.
- **8. Italy:** While being connected to Austria, the bottleneck between Italy and Austria is so dominant that Italy has no correlation with the prices in other groups.

- **9. Poland-North region, Poland-South region:** This group grew by the Poland-South region in comparison with the PCI/PMI hydrogen infrastructure level.
- **10. Sweden, Finland:** The prices in this group show significant correlations with prices in groups 3, 4, 5, 6, 7, 11. The group exists due to a bottleneck between Sweden/Finland and Germany and a bottleneck between Finland and Estonia.
- **11. Estonia, Latvia, Lithuania:** The prices in this group show significant correlations with prices in groups 3, 4, 5, 6, 7, 10. The group exists due to a bottleneck between Finland and Estonia as well as bottlenecks from Lithuania to Poland and within Poland.
- **12.Ireland, the United Kingdom:** Isolated countries without significant price correlations but with average prices below 100 €/MWh.
- **13. Greece, Bulgaria:** Countries showing significant price correlation, jointly isolated from the other European countries.
- 14. Croatia (only connected to Bosnia), Slovenia, Luxembourg, Cyprus, Malta: Isolated countries without significant price correlations (except for Croatia and Slovenia due to a similar national hydrogen production constellation) and with average prices above 100 €/MWh.

The IGI indicator 1 in the 2040 assessment of the Advanced hydrogen infrastructure level reveals the same borders that were identified in the PCI/PMI hydrogen infrastructure level assessment for 2040.

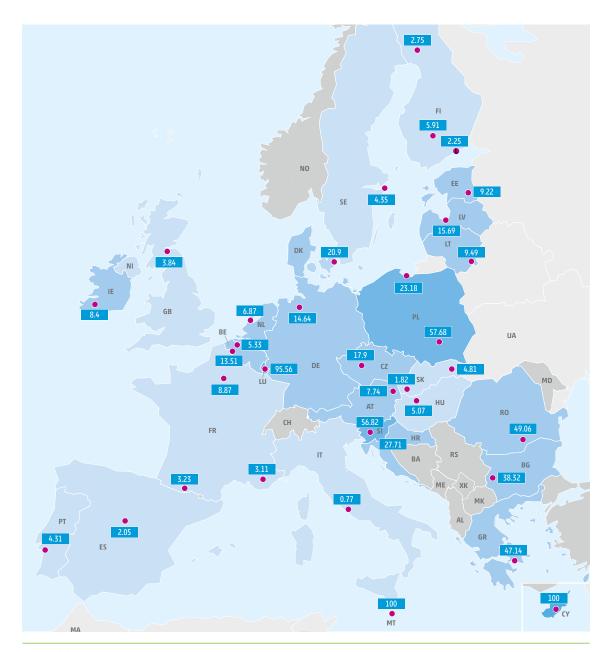

Border	Threshold 1: Absolute average hourly hydrogen market clearing price spread above 4 €/MWh (number of days)	Threshold 2: More than 40 days with hydrogen market clearing price spread above 20 €/MWh (number of days)
DEh ₂ -DKh ₂	24	155
DEh ₂ -FIh ₂	18	114
DEh ₂ -ITh ₂	31	206
DEh ₂ -PLh ₂ N	45	271
DEh ₂ -PLh ₂ S	45	271
DEh ₂ -SEh ₂	18	114
Flh ₂ -EEh ₂	15	97
FRh ₂ -FRh ₂ S	49	319
FRh ₂ -FRh ₂ SW	31	183
FRh ₂ -ITh ₂	32	214
FRh ₂ S-FRh ₂ SW	57	265
HUh ₂ -ATh ₂	44	271
HUh ₂ -HRh ₂	31	207
HUh ₂ -SKh ₂ E	44	271
ITh ₂ -ATh ₂	31	206
ITh ₂ -HRh ₂	49	288
LTh ₂ -PLh ₂ N	42	263
NLh ₂ -UKh ₂	58	309
PLh ₂ S-CZh ₂	45	271
PLh ₂ S-SKh ₂ E	45	271
ROh ₂ -BGh ₂	22	129
SIh ₂ -HRh ₂	11	45
SKh ₂ E-PLh ₂ S	45	271
UKh ₂ -BEh ₂	58	309
UKh ₂ -IEh ₂	25	133

Table 34: List of borders in the advanced hydrogen infrastructure level that exceed (at least one of) the thresholds defined for IGI indicator 1 in 2040 (unit: days).

7.1.2.2 IGI INDICATOR 2.1: HYDROGEN DEMAND CURTAILMENT FOR REFERENCE WEATHER YEAR

As explained in section 4.2, this IGI indicator assesses infrastructure gaps by quantifying hydrogen demand curtailments at individual nodes during the reference weather year, assuming no disruptions of infrastructures or of supply sources. It involves a multi-step simulation process integrating DHEM and DGM¹⁶ outputs to evaluate the combined curtailments across nodes. The assessment is performed for the advanced hydrogen infrastructure level in 2040, showing the effects of matured infrastructure in 2040.

Figure 36 and Table 35 show yearly average curtailment rates of hydrogen demand in the Zone 2 nodes of different European countries. For countries where the hydrogen market is divided into several sub-zones (i.e., nodes), the curtailment rate in the different sub-zones is presented. The yearly average hydrogen curtailment rates are thereby colour-coded in the map to indicate levels relative to the set threshold: blue signifies curtailment above the threshold, while green represents rates that are not above it.

Figure 39: Yearly average hydrogen demand curtailment rate at country or node level in the advanced hydrogen infrastructure level in 2040 for reference year (unit: %).

 $^{16\,\,}$ This draft TYNDP 2024 IGI report only includes the simulation results of the DHEM.

Country/ Region	Demand Curtailment (%)	Threshold passed		
ATh ₂	7.74	YES		
BEh ₂	5.33	YES		
BEH ₂ Mo	13.51	YES		
BGh ₂	38.32	YES		
CYh ₂	100	YES		
CZh ₂	17.9	YES		
DEh ₂	14.40	YES		
DKh ₂	20.9	YES		
EEh ₂	9.22	YES		
ESh ₂	2.05	YES		
Flh ₂	5.91	YES		
Flh ₂ N	2.75	YES		
Flh ₂ S	2.25	YES		
FRh ₂	8.87	YES		
FRh ₂ S	3.11	YES		
FRh ₂ SW	3.23	YES		
GRh ₂	47.14	YES		
HRh ₂	27.71	YES		

Country/	Demand	Threshold		
Region	Curtailment (%)	passed		
HUh ₂	5.07	YES		
IEh ₂	8.4	YES		
ITh ₂	0.77	YES		
LTh ₂	9.49	YES		
LUh ₂	95.56	YES		
LVh ₂	15.69	YES		
MTh ₂	100	YES		
NLh ₂	6.87	YES		
PLh ₂ N	23.18	YES		
PLh ₂ S	57.68	YES		
PTh ₂	4.31	YES		
ROh ₂	49.06	YES		
SEh ₂	4.35	YES		
Slh ₂	56.82	YES		
SKh ₂ E	1.82	YES		
SKh ₂ W	3.72	YES		
UKh ₂	3.84	YES		

Table 35: Yearly average hydrogen demand curtailment rate at country/sub-zone level in the Advanced hydrogen infrastructure level in 2040 for reference weather year and check of the threshold of IGI indicator 2.1 (unit: %).

All European countries and regions overshoot the threshold of 0 % for IGI indicator 2.1 under the Advanced hydrogen infrastructure level in 2040. However, differences in the hydrogen curtailment rates between nodes are related to the level of infrastructure development and supply availability. In comparison with IGI indicator 1, this IGI indicator focusses on the availability of supplies.

As detailed in Figure 39, (regions of) countries can be aggregated in different groups according to their average yearly hydrogen demand curtailment rates:

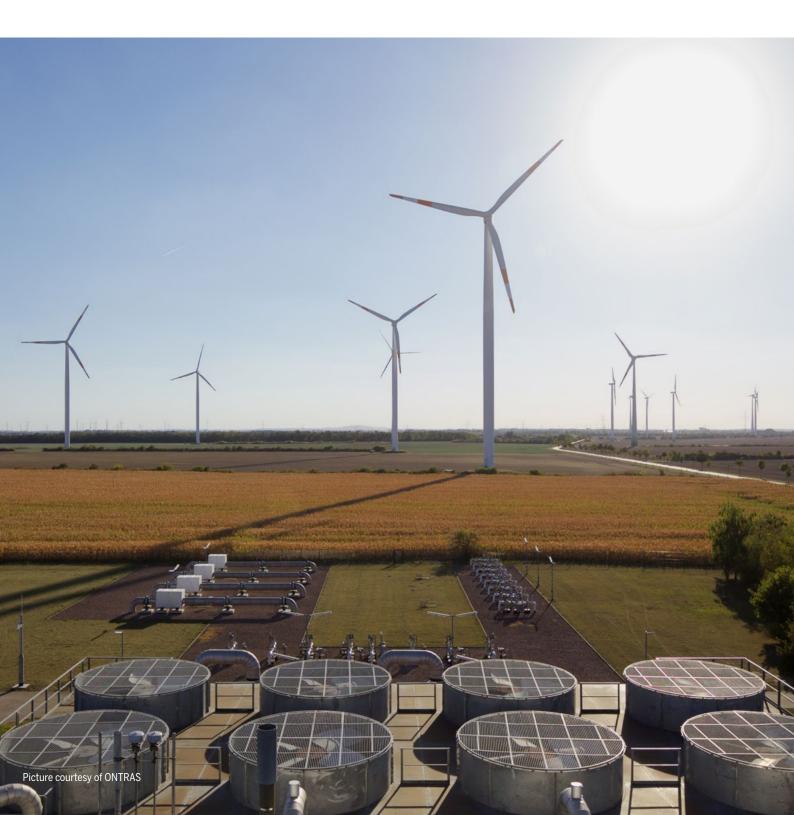
- Rates below 5 %: Spain, Finland-North region, Finland-South region, France-South region, France-Southwest region, Italy, Portugal, Sweden, Slovakia-East, Slovakia-West, the United Kingdom.
- 2. Rates between 5 % and 20 %: Austria, Belgium, Belgium-Mons region, Czechia, Germany, Estonia, Finland, France, Hungary, Ireland, Lithuania, Latvia, the Netherlands.
- 3. Rates between 20 % and 50 %: Bulgaria, Denmark, Greece, Croatia, Poland-North, Romania.

- **4. Rates between 50 % and 100 %:** Slovenia, Luxembourg, Poland-South.
- 5. Full curtailment of 100 %: Cyprus, Malta.

Without the infrastructure already considered in the hydrogen infrastructure level, the overall hydrogen demand curtailment would be higher.

While hydrogen demand curtailment rates decrease in newly connected countries and regions and the overall hydrogen demand curtailment in Europe decreases compared to the PCI/PMI hydrogen infrastructure level, the curtailment rates in several countries and regions increase slightly, as other, newly connected countries and regions are supplied instead.

Considering group 1, in comparison with the PCI/PMI hydrogen infrastructure level, improved infrastructure could especially enhance the curtailment situation of the France-Southwest region (11.5 % to 3 %).


Within group 2, especially Hungary could benefit from its new interconnection in the Advanced hydrogen infrastructure level (75 % to 5 %).

Countries and regions of group 3 see the most significant reduction in the Poland-North region (50 % to 23 %) due to additional capacities in the Advanced hydrogen infrastructure level as well as in Romania (90 % to 49 %) due to its new interconnection with Hungary. Here, Hungary is acting as a transit country for hydrogen it receives from Slovakia.

In group 4, advanced infrastructure projects mitigate curtailment in Poland-South.

Malta and Cyprus, representing group 5, remain fully curtailed due to their geographic isolation within the European hydrogen market and have no hydrogen production assets.

In the Poland-North Region, France and Czechia, on top of the curtailments observed in Zone 2 nodes as described in the paragraphs above, hydrogen demand curtailments can be observed in Zone 1 that increase during the winter months.



7.1.2.3 IGI INDICATOR 2.2: HYDROGEN DEMAND CURTAILMENT FOR STRESSFUL WEATHER YEAR

Threshold 1: Average yearly hydrogen demand curtailment rate above 3 %

The 2.2 IGI indicator shows the yearly average hydrogen demand curtailment rates in the Zone 2 nodes of various European countries for 2040, simulated under a stressful weather year. This weather scenario assumes adverse conditions, such as reduced wind and solar energy availability, which directly impacts hydrogen production. For countries with

hydrogen markets divided into multiple sub-zones (i.e., nodes), curtailment rates are depicted individually for each sub-zone on the map. The yearly average hydrogen curtailment rates are thereby colour-coded to indicate levels relative to the set threshold 1: blue signifies curtailment above the threshold, while green represents rates that are not.

Figure 40: Yearly average hydrogen demand curtailment rate at country or node level in the Advanced hydrogen infrastructure level in 2040 for stressful weather year (unit: %).

Country node	Demand Curtailment (%)					
ATh ₂	9.09					
BEh ₂	5.41					
BEH ₂ Mo	20.87					
BGh ₂	37.97					
CYh ₂	100.00					
CZh ₂	22.83					
DEh ₂	20.17					
DKh ₂	26.57					
EEh ₂	17.79					
ESh ₂	2.29					
Flh ₂	11.38					
Flh ₂ N	5.94					
Flh ₂ S	4.97					
FRh ₂	13.67					
FRh ₂ S	4.86					
FRh ₂ SW	4.99					
GRh ₂	46.53					
HRh ₂	29.54					

Country node	Demand Curtailment (%)
HUh ₂	5.19
IEh ₂	9.54
ITh ₂	0.43
.Th ₂	15.65
.Uh ₂	95.89
.Vh ₂	26.98
/ITh ₂	100.00
Lh ₂	7.84
PLh ₂ N	31.93
PLh ₂ S	61.94
Th ₂	6.10
Oh ₂	52.78
SEh ₂	9.41
Slh ₂	64.42
SKh ₂ E	1.06
SKh ₂ W	2.39
JKh ₂	5.97

Table 36: Yearly average hydrogen demand curtailment rate at country/sub-zone level in the advanced infrastructure level in 2040 for stressful weather year and check of threshold 1 of IGI indicator 2.2 (unit: %).

Countries and (regions of countries) can be aggregated in different groups according to their average yearly hydrogen demand curtailment rates:

- **1. Rates below 3 %:** Slovakia-East, Slovakia-West, Spain, Italy.
- 2. Rates between 3 % and 20 %: Austria, Belgium, Estonia, Finland, Finland-North region, Finland-South region, France, France-South region, France-Southwest region, Hungary, Ireland, Lithuania, the Netherlands, Portugal, Sweden, the United Kingdom.
- 3. Rates between 20 % and 50 %: Belgium-Mons Region, Bulgaria, Czechia, Germany, Denmark, Greece, Croatia, Latvia, Poland-North region.
- **4. Rates between 50 % and 100 %:** Luxembourg, Poland-South region, Romania, Slovenia.
- 5. Full curtailment of 100 %: Malta, Cyprus.

Compared with the PCI/PMI hydrogen infrastructure level, group 1 grows by the Slovakia-West region, reducing its hydrogen demand curtailment below the threshold of IGI indicator 2.2.

Threshold 2: hydrogen demand curtailment rate of more than 5 % for at least one month per year

All the countries and regions that exceed threshold 1 also exceeded threshold 2.

7.2 COMPARISON BETWEEN PCI/PMI HYDROGEN INFRASTRUCTURE LEVEL AND ADVANCED HYDROGEN INFRASTRUCTURE LEVEL

7.2.1 MAXIMUM UTILISATION OF INTERCONNECTORS

Table 37 displays the maximum utilisation rates of hydrogen interconnections for both hydrogen infrastructure levels in 2040 for the reference weather year. As stated in section 3, some countries are completely isolated from the hydrogen infrastructure:

Countries and regions that are isolated in both hydrogen infrastructure levels: Slovenia, Ireland, the United Kingdom, Cyprus, Malta, France-Southwest region, Poland-South region, Luxembourg. Bulgaria and Greece are interconnected with each other but isolated from the main backbone.

✓ Countries that are only isolated in the PCI/PMI hydrogen infrastructure level: Hungary, Romania. Bosnia and Croatia are interconnected with each other in the Advanced hydrogen infrastructure level but isolated from the main backbone.

	Stated (direction	Reverse direction		
Interconnection	PCI/ PMI IL	ADV IL	PCI/ PMI IL	ADV IL	Comments
ATh ₂ → DEh ₂	100	100	100	100	No bottleneck, as alternative route (e.g., through SK and CZ) still has free capacities.
$\begin{array}{l} \text{ATh}_2 \rightarrow \\ \text{IB-ITh}_2 \end{array}$	100	45	100	100	Capacity from IT to AT is a bottleneck.
ATh ₂ → IB-SKh ₂ W	100	100	94	87	
BAh₂ → HRh₂		0		0	The low utilisation is caused by low hydrogen supply to these jointly isolated countries, so BA and HR always need hydrogen supply themselves if the other country needs it.
$BEh_2 \rightarrow DEh_2$	100	100	100	100	
$BEh_2 \rightarrow FRh_2$	100	100	100	100	Capacity from FR to BE is a bottleneck.
$BEh_2 \rightarrow FRh_2N$	0	0	100	100	Capacity from FR-North to BE is a bottleneck.
$BEh_2 \rightarrow NLh_2$	100	100	100	100	No bottleneck, as alternative route (e.g., through DE) still has free capacities.
BEH ₂ Mo → FRh ₂ Va	0	0	39	36	The flow direction is from FR to BE.
$BGh_2 \to GRh_2$	0	0	53	46	The flow direction is from GR to BG.
$CZh_2 \rightarrow DEh_2$	50	50	49	40	
$DEh_2 \rightarrow DKh_2$	59	87	100	100	Capacity from DK to DE is a bottleneck.
$DEh_2 \rightarrow FRh_2$	100	100	100	100	Capacity from FR to DE is a bottleneck.
$DEh_2 \rightarrow NLh_2$	100	100	92	99.9	
$DEh_2 \rightarrow PLh_2N$		100		93	Capacity from DE to PL is a bottleneck.
$DEh_2 \rightarrow PLh_2nbc$	100	100	100	100	Capacity from DE to PL is a bottleneck.
DEh ₂ ba → DEh ₂		0			
DEh ₂ bp → DEh ₂		100			Allows import through DEbp terminal in ADV IL.
DEh₂bp → DEh₂ba		0			
EEh ₂ → Flh ₂ S	0	0	100	100	Capacity from FI to EE is a bottleneck (as alternative route via DE is also congested at the same time).

	Stated direction		Reverse direction		
Interconnection	PCI/ PMI IL	ADVIL	PCI/ PMI IL	ADVIL	Comments
EEh ₂ → LVh ₂	96	96	0	0	
ESh ₂ → FRh ₂ S	100	100	80	44	Capacity from FR-South to other nodes in FR is the dominant bottleneck.
$ESh_2 \to PTh_2$	61	24	0	0	The flow direction is from ES to PT.
Flh ₂ → Flh ₂ Al	63	56	45	20	
Flh ₂ → Flh ₂ N	1	0.3	2	1	Very high capacities set in the model as this arc is not representing a bottleneck.
Flh ₂ → Flh ₂ S	2	1	3	3	Very high capacities set in the model as this arc is not representing a bottleneck.
Flh ₂ AI → DEh ₂	100	100			Capacity from FI/SE to DE is a bottleneck (as alternative route via EE is also congested at the same time).
$Flh_2Al \rightarrow SEh_2$	13	5	47	47	
$Flh_2N \rightarrow SEh_2$	94	55	100	100	
FRh ₂ → FRh ₂ S	91	54	100	100	Capacity from FR-South to FR is a bottleneck that limits supplies from ES.
$FRh_2 \rightarrow FRh_2Va$	29	1	14	13	
$HUh_2 \rightarrow IB\text{-}SKh_2C$		41		100	Capacity from SK to HU is a bottleneck.
HUh ₂ → ROh ₂		88		14	Utilisation rate from HU to RO is affected by bottleneck from SK to HU.
$IB-ITh_2 \rightarrow ITh_2$	0	0	84	84	
$IB\text{-}SKh_2C \rightarrow SKh_2E$	7	3	100	50	
$IB\text{-}SKh_2C \to SKh_2W$	100	64	6	38	
IB-SKh ₂ E → SKh ₂ E	100	50	0	0	
IB-SKh ₂ W → CZh ₂	100	100			
IB-SKh ₂ W → SKh ₂ W	20	45	100	64	
$LTh_2 \rightarrow LVh_2$	5	5	100	92	
LTh ₂ → PLh ₂ nbc	100	94	0	0	
PLh ₂ N → PLh ₂ S		30			
PLh₂nbc → PLh₂N	0	100			Capacity from PLnbc to PL-North is a bottleneck.
PLh ₂ S → PLh ₂ nbc	100	100			
DZh ₂ → ITh ₂	100	100			
LH ₂ _Tk_BE → BEh ₂	100	100			
LH ₂ _Tk_DE → DEh ₂	100	100			
LH ₂ _Tk_DEbp → DEh ₂ bp	0	100			Pipeline in ADV IL allows usage of import terminal.
$LH_2_Tk_FRn \rightarrow FRh_2N$	100	100			
$LH_2_Tk_NL \to NLh_2$	100	100			
$LH_2_Tk_PLN \rightarrow PLh_2N$		100			New terminal in ADV IL.
$MAh_2 \rightarrow ESh_2$	100	100			
UAh ₂ → IB-SKh ₂ E	100	100			
Y-NOh ₂ → DEh ₂	100	100			

Table 37: Maximum utilisation rates of interconnections in the PCI/PMI hydrogen infrastructure level and in the Advanced hydrogen infrastructure level in 2040 for the reference weather year (unit: %).

	Stated direction		Reverse direction		Comments on significant deviations from
Interconnection	PCI/ PMI IL	ADV IL	PCI/ PMI IL	ADV IL	the maximum utilisation rates compared with the reference weather year
ATh ₂ → DEh ₂	100	100	100	100	Increase of max. utilisation from DE to AT.
$ATh_2 \rightarrow IB-ITh_2$	31	44	100	100	
$ATh_2 \to IB\text{-SKh_2W}$	78	100	100	94	Max. utilisation from AT to SK reaches 100 %.
$BAh_2 \rightarrow HRh_2$		0		0	
BEh ₂ → DEh ₂	100	100	100		Max. utilisation from BE to DE reaches 100 %.
$BEh_2 \rightarrow FRh_2$	92	100	100	100	Max. utilisation from BE to FR reaches 100 %.
$BEh_2 \rightarrow FRh_2N$	0	0	100	100	
$BEh_2 \rightarrow NLh_2$	99	100	100	100	
$BEH_2Mo \rightarrow FRh_2Va$	0	0	37	37	
$BGh_2 \rightarrow GRh_2$	0	0	55	55	
$CZh_2 \rightarrow DEh_2$	50	50	48	36	
$DEh_2 \rightarrow DKh_2$	87	87	100	100	
DEh ₂ → FRh ₂	100	100	100	100	
DEh ₂ → NLh ₂	100	100	100	100	Max. utilisation from NL to DE reaches 100 %.
DEh ₂ → PLh ₂ N		100		100	
DEh ₂ → PLh ₂ nbc	100	100	100	100	
DEh ₂ ba → DEh ₂		0			
DEh ₂ bp → DEh ₂		100			
DEh ₂ bp → DEh ₂ ba		0			
EEh ₂ → FIh ₂ S	0	0	100	100	
EEh ₂ → LVh ₂	100	97	0	0	
ESh ₂ → FRh ₂ S	100	100	79	80	Dependence of Iberian hydrogen production on RES and lower RES availability increase max. utilisation from FR to ES to decrease HCR in ES and PT.
ESh ₂ → PTh ₂	60	60	47	47	
Flh ₂ → Flh ₂ Al	64	64	45	26	
Flh ₂ → Flh ₂ N	2	1	1	2	
Flh ₂ → Flh ₂ S	2	2	4	4	
FIh ₂ AI → DEh ₂	100	100			
FIh ₂ AI → SEh ₂	14	14	47	47	
Flh ₂ N → SEh ₂	96	97	100	100	
FRh ₂ → FRh ₂ S	90	91	100	100	
FRh ₂ → FRh ₂ Va	31	31	13	14	
HUh ₂ → IB-SKh ₂ C		41		100	
$HUh_2 \rightarrow ROh_2$		88		14	
$IB-ITh_2 \rightarrow ITh_2$	0	0	84	84	Max. utilisation reaches 100 %.
IB-SKh ₂ C → SKh ₂ E	7	3	100	50	
IB-SKh ₂ C → SKh ₂ W	100	64	7	38	
$IB-SKh_2E \rightarrow SKh_2E$	100	50	0	0	
IB-SKh ₂ W → CZh ₂	100	100	ŭ	Ü	
IB-SKh ₂ W → SKh ₂ W	20	44	100	64	
LTh ₂ → LVh ₂	5	5	100	92	
LIII2 - LVII2	5	5	100	32	

	Stated direction		Reverse	direction	Comments on significant deviations from
Interconnection	PCI/ PMI IL	ADV	PCI/ PMI IL	ADV	the maximum utilisation rates compared with the reference weather year
LTh ₂ → PLh ₂ nbc	100	100	0	0	
$PLh_2N \rightarrow PLh_2S$		30			
$PLh_2nbc \rightarrow PLh_2N$	100	100			
$PLh_2S \rightarrow PLh_2nbc$	27	22			
$DZh_2 \to ITh_2$	100	100			
$LH_2_Tk_BE \rightarrow BEh_2$	100	100			
$LH_2_Tk_DE \rightarrow DEh_2$	100	100			
$LH_2_Tk_DEbp \to DEh_2bp$	0	100			
$LH_2_Tk_FRn \to FRh_2N$	100	100			
$LH_2_Tk_NL \to NLh_2$	100	100			
$LH_2_Tk_PLN \rightarrow PLh_2N$		100			
$MAh_2 \rightarrow ESh_2$	100	100			
$UAh_2 \rightarrow IB-SKh_2E$	100	100			
Y-NOh ₂ → DEh ₂	100	100			

Table 38: Maximum utilisation rates of interconnections in the PCI/PMI hydrogen infrastructure level and in the Advanced hydrogen infrastructure level in 2040 for the stressful weather year (unit: %).

Concerning pipelines connecting offshore electrolysers, the following observations are made:

- A share of the national electrolyser capacity of the Netherlands is allocated to an offshore node. Because it is connected only by capacity from a less-advanced project (HyONE) which is not taken in account in either of the ENTSOG infrastructure levels in this report, Offshore electrolyser node in the Netherlands: A share of the national electrolyser capacity of the Netherlands is allocated to an offshore node. Because it is connected only by capacity from a less-advanced project (HyONE) which is not taken in account in either of the ENTSOG infrastructure levels in this report, the offshore electrolysers are not used in the simulations. This leads to unused renewable hydrogen production offshore. The order of magnitude of this unused renewable hydrogen production offshore would have led to a maximum utilisation rate of 100 % when this less advanced project would be taken into account.
- ✓ Offshore electrolysis in Germany: The offshore electrolysis in Germany (namely in the Northern Sea) is connected to the mainland through the PCI project AquaDuctus. Therefore, the project capacity foreseen for national production is included in the PCI/PMI hydrogen infrastructure level, as well as in the Advanced hydrogen infrastructure level. Maximum utilisation rate will be calculated in the final IGI report as described in the TYNDP 2024 Annex D2 based on the enabled electrolyser capacity and infrastructure level.

7.2.2 ANALYSIS WITH HYPOTHETICAL INFRASTRUCTURE APPROACH

The main purpose of this section is the investigation of any system limitations due to the potential bottlenecks in the PCI/PMI and Advanced infrastructure levels, without any implications regarding the development of specific projects¹⁷. It has been found already in the previous sections that infrastructure gaps were identified between Advanced infrastructure level and PCI/PMI infrastructure level. The Advanced infrastructure level includes all projects presented in the PCI/PMI infrastructure level, as well as additional projects. To explore different possibilities and limitations, four different hypothetical scenarios were defined:

- ✓ Unlimited Pipes (UP): unlimited connections between (transmission) nodes;
- Unlimited Pipes + Storages (UPS): unlimited connections between nodes + unlimited storage withdrawal, injection and working gas volume in existing storage countries;
- ✓ Unlimited Imports (UI): unlimited imports capacities for imports defined in each infrastructure level and reference years;
- ✓ Unlimited Storages (US): unlimited storage withdrawal, injection and working gas volume in existing storage countries;

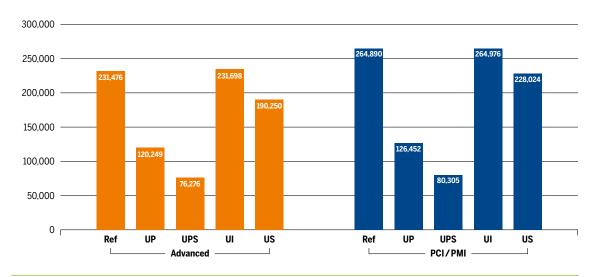


Figure 41: Shortage Advanced level and Shortage PCI/PMI level 2040

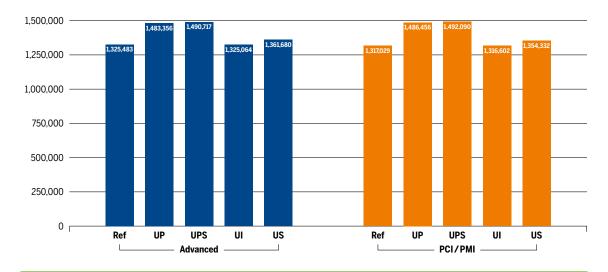


Figure 42: Electrolyser production Advanced level 2040 and PCI level 2040

 $^{17 \}quad \text{See section 6 of Annex D2} - \text{Hydrogen Infrastructure Gaps Identification Methodology, available on } \underline{\text{https://tyndp2024.entsog.eu/downloads/}}$

Under unlimited pipelines scenario, shortage is mitigated in both cases by more than 50%. Internal bottlenecks are depicting limitations to meet the demand and supply. Moreover, adding more flexibility by utilizing storages is reducing a bit more shortage. Thus, even with additional investments, to enhance interconnections and storages capacities, demand cannot be totally satisfied in 2040. Extra production or imports need to be added by 2040 to cover total demand for both infrastructure levels.

Moreover, when comparing with the unlimited imports scenario, where it seems to not give much extra benefits, it confirms that internal bottlenecks are the limitation to enable flow to go from different supply sources to demand.

By comparing the integration of electrolysers production is evident that the bottlenecks are limiting the integration of power generation in the system.

This integration of electrolysers production is also valid for all other production sources.

7.2.3 IDENTIFICATION OF PROJECTS THAT SOLVED OR MITIGATED INFRASTRUCTURE GAPS

Solved infrastructure gaps in Advanced hydrogen infrastructure level compared to PCI/PMI hydrogen infrastructure level

The additional projects of the advanced infrastructure level could solve the following indications of regional hydrogen infrastructure gaps:

- ▲ Borders as captured by IGI indicator 1: None.
- Countries and regions as captured by IGI indicator 2.1: None.

▲ Countries and regions as captured by IGI indicator 2.2: Slovakia-West.

Not all IGI indicators could be solved from a regional perspective even if the advanced hydrogen projects provide benefits.

Identification of advanced, non-PCI/PMI projects responsible for solving hydrogen infrastructure gaps by addressing hydrogen infrastructure bottlenecks

The following advanced, non-PCI/PMI projects contributed to mitigate the identified infrastructure gaps in the 2040 assessment:

- ✓ Pipeline imports: All pipeline imports available in both infrastructure levels.
 - Slovakia to Hungary (HU/SK hydrogen corridor and SK-HU H₂ corridor)
 - Hungary to Romania (Giurgiu Nădlac hydrogen corridor)
 - Netherlands to Germany (H2Coastlink, IP Elten/Zevenaar – Cologne, Hyperlink and H2ercules Network North-West)
 - Germany to Poland (Pomeranian Green Hydrogen Cluster)
 - Hungary to Romania (Giurgiu Nădlac hydrogen corridor and HU/RO hydrogen corridor)
 - Romania to Hungary (Giurgiu Nădlac hydrogen corridor)

▲ Import terminals

- New Ammonia terminal in Gdansk and Hydrogen Highway – Northern Section
- Increased terminal capacity in the Netherlands (Eemshaven H₂)
- ▲ Hydrogen storages
 - Hydrogen storage projects in Germany (RWE H₂ Storage Gronau-Epe, UST Hydrogen Storage Krummhörn, RWE H₂ Storage Xanten, EWE Hydrogen Storage Huntorf, EWE Hydrogen Storage Jemgum, RWE H₂ Storage Staßfurt, EWE Hydrogen Storage Huntorf)
 - Hydrogen storage project in the France-Southwest region of France (HySoW storage)

Besides the projects listed above, the projects included in the PCI/PMI hydrogen infrastructure level also contribute to the solving and mitigation of infrastructure gaps.

8 CONCLUSIONS

This IGI report provides the following main insights:

- Observed hydrogen demand satisfaction and hydrogen price convergence in Europe are enabled by the projects that are included in the respective hydrogen infrastructure levels.
- ✓ Every simulation showed hydrogen demand curtailments in Europe, especially in winter.
- Supply and infrastructure in the two hydrogen infrastructure levels are not sufficient on European level. This is indicated by the IGI indicators.
- ▲ All European hydrogen corridors considered in the assessments are needed to satisfy hydrogen demand.
- Hydrogen pipelines and storages help to mitigate hydrogen demand curtailments.
- Due to the effect of the weather on the demand/ supply balance of hydrogen, the European hydrogen backbone benefits from flexibilities in the supply, storage, and transit infrastructure.

- ✓ Several countries, especially islands and countries in South-East Europe, are not connected to the European hydrogen backbone in one or both hydrogen infrastructure levels.
- ✓ Isolated countries benefit from new connections with the European hydrogen backbone.
- Many projects represent anticipatory investments. They are not fully utilised in 2030 but show high utilisation in 2040. This allows to unlock the significant economies of scale of hydrogen infrastructure projects.
- Even projects that are currently defined as less advanced, especially if increasing exports towards curtailed countries, will be needed.

Thereby, this IGI report is based on the TYNDP 2024 NT+ scenario and the projects submitted to the TYNDP 2024.

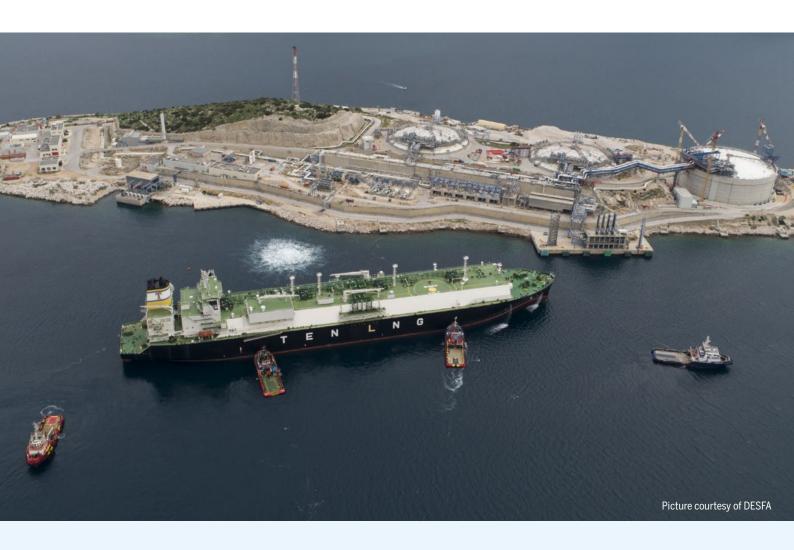
ANNEX I: NODE-SPECIFIC HYDROGEN PRODUCTION CAPACITIES

Node	Category	Year	Installed capacity ¹ [MWH ₂]	Data sources besides TYNDP 2024 NT+ scenario ² with specifications of TYNDP 2024 Annex D1 ³
AT Z1	SMR/ATR	2030	996	
AT Z1	SMR/ATR	2040	498	
AT00 Z1	Electrolyser Z1	2030	797	
AT00 Z1	Electrolyser Z1	2040	1,091	
AT00 Z2	Electrolyser Z2	2030	14	
AT00 Z2	Electrolyser Z2	2040	4,797	
BE Z1	SMR/ATR	2030	2,298	
BE Z1	SMR/ATR	2040	1,149	
BEh ₂	Electrolyser Z2	2030	303	
BEh ₂	Electrolyser Z2	2040	1,367	
BG Z1	SMR/ATR	2030	1,331	
BG Z1	SMR/ATR	2040	665	
BG00 Z2	Electrolyser Z2	2030	53	
BG00 Z2	Electrolyser Z2	2040	72	
CH00 Z2	Electrolyser Z2	2030	213	
CH00 Z2	Electrolyser Z2	2040	1,135	
CZ Z1	SMR/ATR	2030	988	
CZ Z1	SMR/ATR	2040	494	
CZ00 Z1	Electrolyser Z1	2040	574	
CZ00 Z2	Electrolyser Z2	2030	228	
CZ00 Z2	Electrolyser Z2	2040	1,494	
DE Z1	SMR/ATR	2030	9,748	

¹ The electrolyser efficiency is 69% in 2030 and 71% in 2040 in terms of NCV. Therefore, from the perspective of the electricity system, the installed capacity of electrolysers is higher. Here, the installed capacities are stated from the perspective of the hydrogen system and in terms of GCV.

² Each country's total electrolyser and SMR/ATR capacities are specified in the TYNDP 2024 NT+ scenario. In the scenario documentation, the NCV is used to align with EC scenarios. The TYNDP 2024 however uses the GCV as this is commonly used in the gas markets.

³ TYNDP 2024 Annex D1 explains i) that project promoters can split Zones into sub-Zones, ii) that a country's electrolyser capacity can undergo a redistribution methodology to allocate electrolyser capacities to (sub-)Zones, and iii) that SMR/ATR capacities for hydrogen production from natural gas are only connected to Zone 1.


Node	Category	Year	Installed capacity ¹ [MWH ₂]	Data sources besides TYNDP 2024 NT+ scenario ² with specifications of TYNDP 2024 Annex D1 ³
DE Z1	SMR/ATR	2040	4,874	
DE00 Z2	Electrolyser Z2	2030	10,378	
DE00 Z2	Electrolyser Z2	2040	32,555	
DK Z1	SMR/ATR	2030	0	
DK Z1	SMR/ATR	2040	0	
DKh ₂	Electrolyser Z2	2030	2,596	
DKh ₂	Electrolyser Z2	2040	3,553	
DKW1 Z2	Electrolyser Z2	2030	1,359	
DKW1 Z2	Electrolyser Z2	2040	11,709	
EE Z1	SMR/ATR	2030	167	
EE Z1	SMR/ATR	2040	83	
ES Z1	SMR/ATR	2030	2,891	
ES Z1	SMR/ATR	2040	1,446	
ES00 Z2	Electrolyser Z2	2030	7,822	
ES00 Z2	Electrolyser Z2	2040	14,298	
ES00_DRES ES	DRES	2030	12,009	
ES00_DRES ES	DRES	2040	21,584	
ESh ₂ Z1a Z1	Electrolyser Z1	2030	1,007	
ESh₂Z1a Z1	Electrolyser Z1	2040	1,378	
FI00 Z1	Electrolyser Z1	2030	1,567	Project promoter specifications
FI00 Z1	Electrolyser Z1	2040	2,623	Project promoter specifications
Flh ₂ N	Electrolyser Z2	2030	2,863	Project promoter specifications
Flh ₂ N	Electrolyser Z2	2040	3,919	Project promoter specifications
Flh ₂ S	Electrolyser Z2	2030	2,652	Project promoter specifications
Flh ₂ S	Electrolyser Z2	2040	20,207	Project promoter specifications
FIS Z1	SMR/ATR	2030	785	Project promoter specifications

Node	Category	Year	Installed capacity ¹ [MWH ₂]	Data sources besides TYNDP 2024 NT+ scenario ² with specifications of TYNDP 2024 Annex D1 ³
FIS Z1	SMR/ATR	2040	393	Project promoter specifications
FR Z1	SMR/ATR	2030	2,635	Project promoter specifications
FR Z1	SMR/ATR	2040	1,317	Project promoter specifications
FRh ₂	Electrolyser Z2	2030	3,010	Project promoter specifications
FRh ₂	Electrolyser Z2	2040	12,981	Project promoter specifications
FRh ₂ SW	Electrolyser Z2	2030	167	Project promoter specifications
FRh ₂ SW	Electrolyser Z2	2040	754	Project promoter specifications
FRh ₂ Va	Electrolyser Z2	2030	212	Project promoter specifications
FRh ₂ Va	Electrolyser Z2	2040	412	Project promoter specifications
GR Z1	SMR/ATR	2030	785	
GR Z1	SMR/ATR	2040	393	
GR00 Z2	Electrolyser Z2	2030	974	
GR00 Z2	Electrolyser Z2	2040	6,513	
HR Z1	SMR/ATR	2030	917	
HR Z1	SMR/ATR	2040	459	
HR00 Z1	Electrolyser Z1	2030	990	
HR00 Z1	Electrolyser Z1	2040	1,355	
HR00 Z2	Electrolyser Z2	2030	43	
HR00 Z2	Electrolyser Z2	2040	2,914	
HU Z1	SMR/ATR	2030	1,264	
HU Z1	SMR/ATR	2040	632	
HU00 Z2	Electrolyser Z2	2030	195	
HU00 Z2	Electrolyser Z2	2040	686	
IE Z1	SMR/ATR	2030	0	
IE Z1	SMR/ATR	2040	0	
IE00 Z1	Electrolyser Z1	2030	266	
IE00 Z1	Electrolyser Z1	2040	364	
IE00 Z2	Electrolyser Z2	2030	625	
IE00 Z2	Electrolyser Z2	2040	3,122	
IT Z1	SMR/ATR	2030	3,158	
IT Z1	SMR/ATR	2040	1,579	
ITCA Z2	Electrolyser Z2	2030	1,311	

Node	Category	Year	Installed capacity ¹ [MWH ₂]	Data sources besides TYNDP 2024 NT+ scenario ² with specifications of TYNDP 2024 Annex D1 ³
ITCA Z2	Electrolyser Z2	2040	1,794	
ITCN Z2	Electrolyser Z2	2040	1,453	
ITCS Z2	Electrolyser Z2	2040	747	
ITN1 Z2	Electrolyser Z2	2040	1,560	
ITS1 Z2	Electrolyser Z2	2030	2,323	
ITS1 Z2	Electrolyser Z2	2040	3,179	
ITSI Z2	Electrolyser Z2	2030	424	
ITSI Z2	Electrolyser Z2	2040	991	
LT Z1	SMR/ATR	2030	1,469	
LT Z1	SMR/ATR	2040	734	
LT00 Z2	Electrolyser Z2	2030	243	
LT00 Z2	Electrolyser Z2	2040	1,963	
LU Z1	SMR/ATR	2030	0	
LU Z1	SMR/ATR	2040	0	
LUG1 Z1	Electrolyser Z1	2040	46	
LUG1 Z2	Electrolyser Z2	2030	41	
LUG1 Z2	Electrolyser Z2	2040	56	
LV Z1	SMR/ATR	2030	0	
LV Z1	SMR/ATR	2040	0	
NL Z1	SMR/ATR	2030	6,736	
NL Z1	SMR/ATR	2040	3,368	
NL00 Offshore	Electrolyser Offshore	2040	9,737	Project promoter specifications
NL00 Z2	Electrolyser Z2	2030	3,246	
NL00 Z2	Electrolyser Z2	2040	16,385	
PLh ₂ N	Electrolyser Z2	2040	158	Project promoter specifications
PLh ₂ nZ1a Z1	Electrolyser Z1	2040	694	Project promoter specifications
PLh ₂ S	Electrolyser Z2	2030	1,623	Project promoter specifications
PLh ₂ S	Electrolyser Z2	2040	3,038	Project promoter specifications
PLN Z1	SMR/ATR	2030	2,255	Project promoter specifications
PLN Z1	SMR/ATR	2040	1,127	Project promoter specifications
PLS Z1	SMR/ATR	2030	2,255	Project promoter specifications
PLS Z1	SMR/ATR	2040	1,127	Project promoter specifications

Node	Category	Year	Installed capacity ¹ [MWH ₂]	Data sources besides TYNDP 2024 NT+ scenario ² with specifications of TYNDP 2024 Annex D1 ³
PT Z1	SMR/ATR	2030	542	
PT Z1	SMR/ATR	2040	271	
PT00 Z1	Electrolyser Z1	2040	82	
PT00 Z2	Electrolyser Z2	2030	1,014	
PT00 Z2	Electrolyser Z2	2040	1,538	
RO Z1	SMR/ATR	2030	1,834	
RO Z1	SMR/ATR	2040	917	
R000 Z2	Electrolyser Z2	2030	406	
R000 Z2	Electrolyser Z2	2040	567	
SE Z1	SMR/ATR	2030	664	
SE Z1	SMR/ATR	2040	332	
SE01 Z1	Electrolyser Z1	2030	74	
SE01 Z1	Electrolyser Z1	2040	101	
SE01 Z2	Electrolyser Z2	2030	1,201	
SE01 Z2	Electrolyser Z2	2040	1,644	
SE02 Z1	Electrolyser Z1	2030	474	
SE02 Z1	Electrolyser Z1	2040	2,035	
SE02 Z2	Electrolyser Z2	2030	1,163	
SE02 Z2	Electrolyser Z2	2040	1,592	
SE03 Z2	Electrolyser Z2	2040	8,936	
SE04 Z1	Electrolyser Z1	2030	109	
SE04 Z1	Electrolyser Z1	2040	149	
SE04 Z2	Electrolyser Z2	2030	2,388	
SE04 Z2	Electrolyser Z2	2040	3,268	
SI Z1	SMR/ATR	2030	0	
SI Z1	SMR/ATR	2040	0	
SI00 Z1	Electrolyser Z1	2030	45	
SI00 Z1	Electrolyser Z1	2040	142	
SI00 Z2	Electrolyser Z2	2030	186	
SI00 Z2	Electrolyser Z2	2040	1,772	
SKE Z1	SMR/ATR	2030	311	Project promoter specifications
SKE Z1	SMR/ATR	2040	155	Project promoter specifications

Node	Category	Year	Installed capacity ¹ [MWH ₂]	Data sources besides TYNDP 2024 NT+ scenario ² with specifications of TYNDP 2024 Annex D1 ³
SKW Z1	SMR/ATR	2030	621	Project promoter specifications
SKW Z1	SMR/ATR	2040	311	Project promoter specifications
UK Z1	SMR/ATR	2030	3,528	
UK Z1	SMR/ATR	2040	1,764	
UK00 Z1	Electrolyser Z1	2030	1,919	
UK00 Z1	Electrolyser Z1	2040	7,280	
UK00 Z2	Electrolyser Z2	2030	1,900	
UK00 Z2	Electrolyser Z2	2040	12,038	
UKNI	Electrolyser Z2	2030	2,405	
UKNI	Electrolyser Z2	2040	3,292	
UKNI Z1	Electrolyser Z1	2030	282	
UKNI Z1	Electrolyser Z1	2040	386	

ANNEX II: YEARLY ENERGY FLOWS

(IN EU-27 AND UK) FOR REFERENCE WEATHER YEAR AND STRESSFUL WEATHER YEAR IN 2030 AND 2040 ASSESSMENT CASES.

				INFRASTRUC	TURE LEVEL			
	ADVANCED PCI/PMI							
		CLIMATE YEAR						
	19	95	20	009	19	95	20	009
				SIMULAT	ION YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
Unit: GWh/y								
AT	35,673	35,232	37,815	35,256	3,544	31,584	3,867	31,351
$ATh_2 \rightarrow CZh_2$	0	0	0	0	0	0	0	0
$ATh_2 \rightarrow DEh_2$	25,165	15,271	29,050	16,328	3,241	22,275	3,612	22,735
$ATh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0
$ATh_2 \rightarrow IB-ITh_2$	1	92	0	15	303	822	255	670
$ATh_2 \rightarrow IB-SKh_2W$	10,508	19,869	8,766	18,914	0	8,487	0	7,946
$ATh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0
BE	312	13,421	317	14,051	3,947	13,106	4,993	13,708
BEh₂ → BEH₂Mo	0	0	0	0	0	0	0	0
$BEh_2 \rightarrow DEh_2$	312	8,880	317	10,019	3,947	7,058	4,993	7,921
$BEh_2 \rightarrow FRh_2$	0	1,987	0	2,166	0	1,798	0	2,138
$BEh_2 \rightarrow FRh_2N$	0	0	0	0	0	0	0	0
$BEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0
$BEh_2 \rightarrow NLh_2$	0	2,554	0	1,866	0	4,250	0	3,648
$BEh_2 \rightarrow UKh_2/INT$	0	0	0	0	0	0	0	0
$BEH_2Mo \rightarrow BEh_2$	0	0	0	0	0	0	0	0
BEH₂Mo → FRh₂Va	0	0	0	0	0	0	0	0
BG	1,278	0	1,277	0	1,273	0	1,274	0
$BGh_2 \rightarrow GRh_2$	1,278	0	1,277	0	1,273	0	1,274	0
$BGh_2 \rightarrow MKh_2$	0	0	0	0	0	0	0	0
$BGh_2 \rightarrow ROh_2$	0	0	0	0	0	0	0	0
CZ	0	1,158	0	751	0	5,301	0	5,669
$CZh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0
$CZh_2 \rightarrow DEh_2$	0	1,158	0	751	0	5,301	0	5,669
CZh₂ → IB-SKh₂W	0	0	0	0	0	0	0	0
$CZh_2 \rightarrow PLh_2S$	0	0	0	0	0	0	0	0

				INFRASTRUC	TURE LEVEL			
		ADVA	NCED			PCI/	PMI	
	CLIMATE YEAR							
	19	95	20	009	19	95	20	009
				SIMULATI	ON YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
	Unit: GWh/y							
DE	48,606	53,038	42,181	51,138	41,550	42,774	33,850	42,722
$DEh_2 \rightarrow ATh_2$	206	2,016	61	1,861	2,924	2,021	2,474	1,959
$DEh_2 \rightarrow BEh_2$	6,192	4,416	3,666	4,092	4,990	6,722	3,177	6,142
$DEh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0
$DEh_2 \rightarrow CZh_2$	4,020	11,744	3,418	9,495	3,553	5,197	2,831	4,410
$DEh_2 \rightarrow DKh_2$	3,816	2,942	3,584	2,747	1,981	3,098	1,576	2,777
$DEh_2 \rightarrow FRh_2$	4,937	5,807	5,650	6,357	2,773	6,404	3,292	6,877
$DEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0
$DEh_2 \rightarrow NLh_2$	3,147	5,384	1,722	4,049	2,510	7,374	1,443	5,953
$DEh_2 \rightarrow PLh_2N$	6,339	5,020	5,745	4,636	0	0	0	0
DEh₂ → PLh₂nbc	9,008	13,214	10,472	15,132	13,337	11,957	13,040	14,605
$DEh_2 \rightarrow Y-NOh_2$	0	0	0	0	0	0	0	0
DEh₂ba → DEh₂	0	0	0	0	0	0	0	0
$DEh_2bp \rightarrow DEh_2$	1,508	2,495	2,215	2,770	0	0	0	0
DEh₂bp → DEh₂ba	0	0	0	0	0	0	0	0
DEZ1a → DEZ1b	9,434		5,648		9,482		6,017	
DK	8,442	20,685	6,714	18,553	8,848	20,477	6,945	18,421
$DKh_2 \rightarrow DEh_2$	8,442	20,685	6,714	18,553	8,848	20,477	6,945	18,421
$DKh_2 \rightarrow PLh_2N$	0	0	0	0	0	0	0	0
$DKh_2 \rightarrow SEh_2$	0	0	0	0	0	0	0	0
EE	2,394	37,945	4,446	28,772	1,815	33,886	2,965	24,365
EEh₂ → FIh₂S	794	0	3,299	0	536	0	2,160	0
$EEh_2 \rightarrow LVh_2$	1,600	37,945	1,147	28,772	1,278	33,886	805	24,365
ES	47.013	61,841	40,809	59,256	46,779	62,483	40,963	59,633
$ESh_2 \rightarrow FRh_2S$	46.286	58,855	39,998	56,379	46,127	59,498	40,246	56,742
ESh ₂ → FRh ₂ SW	0	0	0	0	0	0	0	0
$ESh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0
$ESh_2 \rightarrow PTh_2$	728	2,986	811	2,877	652	2,984	717	2,891

2040 192,150 41,988 359 1,480 54,682 3,135 0 545 14,039
2040 192,150 41,988 359 1,480 54,682 3,135 0 545 14,039
2040 192,150 41,988 359 1,480 54,682 3,135 0 545 14,039
192,150 41,988 359 1,480 54,682 3,135 0 545 14,039
192,150 41,988 359 1,480 54,682 3,135 0 545 14,039
41,988 359 1,480 54,682 3,135 0 545 14,039
41,988 359 1,480 54,682 3,135 0 545 14,039
359 1,480 54,682 3,135 0 545 14,039
1,480 54,682 3,135 0 545 14,039
54,682 3,135 0 545 14,039
3,135 0 545 14,039
0 545 14,039
545 14,039
14,039
F 050
5,950
26,631
43,341
0
0
101,990
4,842
0
25,034
0
3,955
0
5
0
8,815
0
3,636
52,761
0
0
0
0
2,145
797
797
797 3,221

				INFRASTRUC	TURE LEVEL				
	ADVANCED PCI/PMI								
	CLIMATE YEAR								
	1995 2009 1995					2	009		
				SIMULAT	ON YEAR				
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040	
			Unit: (GWh/y					
HR	0	0	0	0	0	0	0	0	
$HRh_2 \to ALh_2$	0	0	0	0	0	0	0	0	
$HRh_2 \to BAh_2$	0	0	0	0	0	0	0	0	
$HRh_2 \to HUh_2$	0	0	0	0	0	0	0	0	
$HRh_2 \to RSh_2$	0	0	0	0	0	0	0	0	
$HRh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0	
HU	6,214	14,100	5,138	12,941	0	0	0	0	
$HUh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0	
HUh₂ → HRh₂	0	0	0	0	0	0	0	0	
HUh₂ → IB-SKh₂C	0	97	0	116	0	0	0	0	
HUh ₂ → ROh ₂	6,214	14,003	5,138	12,826	0	0	0	0	
HUh ₂ → RSh ₂	0	0	0	0	0	0	0	0	
HUh₂ → SIh₂	0	0	0	0	0	0	0	0	
IB	60,745	170,730	59,505	170,965	5,827	158,006	6,265	160,574	
$IB-ITh_2 \rightarrow ATh_2$	41,520	54,669	43,805	54,550	5,524	51,696	6,010	51,588	
IB-ITh ₂ → CHh ₂	0	0	0	0	0	0	0	0	
$IB-ITh_2 \rightarrow ITh_2$	1	92	0	15	303	822	255	670	
IB-SKh ₂ C → HUh ₂	8,032	30,202	6,311	29,208	0	0	0	0	
IB-SKh ₂ C → SKh ₂ E	685	676	623	665	0	895	0	847	
IB-SKh ₂ C → SKh ₂ W	0	15,554	0	16,634	0	32,650	0	33,822	
IB-SKh ₂ E → PLh ₂ S	0	0	0	0	0	0	0	0	
IB-SKh ₂ E → SKh ₂ E	0	38,184	0	38,527	0	34,591	0	35,843	
$IB\text{-}SKh_2W \rightarrow ATh_2$	0	1,807	0	2,187	0	2,679	0	2,829	
IB-SKh ₂ W → CZh ₂	418	17,583	566	17,513	0	31,962	0	32,425	
$IB-SKh_2W \rightarrow SKh_2W$	10,090	11,963	8,199	11,666	0	2,711	0	2,549	
IE	0	0	0	0	0	0	0	0	
$IEh_2 \rightarrow UKh_2$	0	0	0	0	0	0	0	0	
IT	41,520	54,669	43,805	54,550	5,524	51,696	6,010	51,588	
$ITh_2 \rightarrow ESh_2$	0	0	0	0	0	0	0	0	
$ITh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0	
ITh ₂ → IB-ITh ₂	41,520	54,669	43,805	54,550	5,524	51,696	6,010	51,588	
$ITh_2 \rightarrow MTh_2$	0	0	0	0	0	0	0	0	
$ITh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0	
LT	900	33,538	3,597	24,953	636	29,674	2,432	20,683	
$LTh_2 \rightarrow LVh_2$	900	61	3,597	98	632	129	2,427	198	
					1				

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		009 2040 0 0 0 0 21,618 0 21,618
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2030 0 0 0 0 2,559 2,239 320 0	2040 0 0 0 0 21,618
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2030 0 0 0 0 2,559 2,239 320 0	2040 0 0 0 0 21,618
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 2,559 2,239 320 0	0 0 0 0 21,618
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 2,559 2,239 320 0	0 0 0 0 21,618
LU 0 0 0 0 0 0 $LUh_2 \rightarrow BEh_2$ 0 0 0 0 0 0 $LUh_2 \rightarrow DEh_2$ 0 0 0 0 0 0 $LUh_2 \rightarrow FRh_2$ 0 0 0 0 0 0 LV 1,582 34,593 3,913 25,916 1,109 30,629 $LVh_2 \rightarrow EEh_2$ 825 0 3,387 0 564 0 $LVh_2 \rightarrow LTh_2$ 758 34,593 526 25,916 545 30,629	0 0 0 2,559 2,239 320 0	0 0 0 21,618
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 2,559 2,239 320 0	0 0 0 21,618
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 2,559 2,239 320 0	0 0 21,618 0
LUh ₂ \rightarrow FRh ₂ 0 0 0 0 0 0 0 LV 1,582 34,593 3,913 25,916 1,109 30,629 LVh ₂ \rightarrow EEh ₂ 825 0 3,387 0 564 0 LVh ₂ \rightarrow LTh ₂ 758 34,593 526 25,916 545 30,629	0 2,559 2,239 320 0	0 21,618 0
LV 1,582 34,593 3,913 25,916 1,109 30,629 $LVh_2 \rightarrow EEh_2$ 825 0 3,387 0 564 0 $LVh_2 \rightarrow LTh_2$ 758 34,593 526 25,916 545 30,629	2,559 2,239 320 0	21,618 0
$LVh_2 \rightarrow EEh_2$ 825 0 3,387 0 564 0 $LVh_2 \rightarrow LTh_2$ 758 34,593 526 25,916 545 30,629	2,239 320 0	0
$LVh_2 \rightarrow LTh_2$ 758 34,593 526 25,916 545 30,629	320 0	
	0	21,618
MT 0 0 0 0 0 0		
	0	0
$MTh_2 \rightarrow ITh_2$ 0 0 0 0		0
NL 10,007 34,883 14,583 32,610 13,548 27,988	17,082	26,116
$NLh_2 \rightarrow BEh_2$ 2,309 16,018 2,472 14,282 2,286 17,353	2,201	14,677
$NLh_2 \rightarrow DEh_2$ 7,698 18,866 12,111 18,327 11,262 10,635	14,881	11,438
$NLh_2 \rightarrow UKh_2$ 0 0 0 0 0	0	0
PL 9,008 50,337 10,473 43,353 13,341 41,653	13,045	35,163
$PLh_2N \to DEh_2$ 0 168 1 137 0 0	0	0
$PLh_2N \to DKh_2$ 0 0 0 0 0	0	0
$PLh_2N \rightarrow FIh_2AI$ 0 0 0 0 0	0	0
$PLh_2N \rightarrow PLh_2S$ 0 3,353 0 3,197 0 0	0	0
$PLh_2nbc \rightarrow DEh_2$ 0 4,866 0 3,487 1 12,335	2	8,507
$PLh_2nbc \rightarrow LTh_2$ 1,191 0 4,154 0 852 0	2,862	0
$PLh_2nbc \rightarrow PLh_2N$ 7,818 41,887 6,319 36,517 12,489 29,242	10,181	26,619
$PLh_2nbc \rightarrow PLh_2S$ 0 0 0 0 0	0	0
$PLh_2S \rightarrow CZh_2$ 0 0 0 0	0	0
$PLh_2S \rightarrow IB-SKh_2E$ 0 0 0 0 0	0	0
$PLh_2S \rightarrow PLh_2N$ 0 0 0 0 0	0	0
$PLh_2S \to PLh_2nbc$ 0 62 0 16 0 75	0	37
PT 3,777 0 3,417 6 3,823 0	3,428	6
$PTh_2 \rightarrow ESh_2$ 3,777 0 3,417 6 3,823 0	3,428	6
RO 0 21 0 39 0 0	0	0
$ROh_2 \to BGh_2$ 0 0 0 0 0	0	0
$ROh_2 \rightarrow HUh_2$ 0 21 0 39 0 0	0	0
$ROh_2 \to MDh_2$ 0 0 0 0 0 0	0	0
$ROh_2 \to RSh_2$ 0 0 0 0 0 0	0	0
SE 17,749 23,157 11,959 18,192 17,947 22,524	12,278	17,485
$SEh_2 \rightarrow DKh_2$ 0 0 0 0 0	0	0
$SEh_2 \rightarrow FIh_2AI$ 17,601 22,139 11,801 16,576 17,797 21,827	12,074	16,374
$SEh_2 \rightarrow FIh_2N$ 148 1,018 158 1,615 150 697	204	1,111

				INFRASTRUC	TURE LEVE			
		ADVAI	NCED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	20	009	1	995	2	009
				SIMULATI	ON YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: (GWh/y				
SI	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0
$Slh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0
$Slh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0
$Slh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0
SK	8,717	57,819	6,934	58,843	0	62,410	0	64,527
SKh ₂ E → IB-SKh ₂ C	0	35,971	0	36,283	0	32,650	0	33,822
$SKh_2E \rightarrow IB-SKh_2E$	0	0	0	0	0	0	0	0
$SKh_2W \rightarrow IB-SKh_2C$	8,717	10,363	6,934	10,108	0	895	0	847
SKh ₂ W → IB-SKh ₂ W	0	11,484	0	12,452	0	28,865	0	29,858
UK	0	0	0	0	0	0	0	0
UKh ₂ → BEh ₂	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow IEh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow NLh_2$	0	0	0	0	0	0	0	0
UKh ₂ → UKh ₂ /INT	0	0	0	0	0	0	0	0
UKh ₂ /INT → BEh ₂	0	0	0	0	0	0	0	0

ANNEX III: MONTHLY ENERGY FLOWS

(IN EU-27 AND UK) FOR REFERENCE WEATHER YEAR AND STRESSFUL WEATHER YEARS IN 2030 AND 2040 ASSESSMENT CASES

JANUARY		INFRASTRUCTURE LEVEL									
		ADVAI	NCED			PCI/	PMI				
				CLIMAT	E YEAR						
	19	95	20	009	19	95	2	009			
				SIMULAT	ION YEAR						
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040			
			Unit: GWI	1/M							
AT	3,098	1,888	3,456	1,080	402	1,778	98	1,146			
$ATh_2 \rightarrow CZh_2$	0	0	0	0	0	0	0	0			
$ATh_2 \rightarrow DEh_2$	1,813	1,068	2,933	911	402	1,503	98	1,127			
$ATh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0			
$ATh_2 \rightarrow IB-ITh_2$	0	0	0	0	0	0	0	0			
$ATh_2 \rightarrow IB-SKh_2W$	1,285	820	523	169	0	276	0	19			
$ATh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0			
BE	29	1,230	46	2,095	307	1,179	772	2,217			
BEh ₂ → BEH ₂ Mo	0	0	0	0	0	0	0	0			
$BEh_2 \rightarrow DEh_2$	29	1,013	46	1,362	307	910	772	1,375			
$BEh_2 \rightarrow FRh_2$	0	139	0	222	0	140	0	224			
$BEh_2 \rightarrow FRh_2N$	0	0	0	0	0	0	0	0			
$BEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0			
$BEh_2 \rightarrow NLh_2$	0	78	0	511	0	129	0	618			
$BEh_2 \rightarrow UKh_2/INT$	0	0	0	0	0	0	0	0			
$BEH_2Mo \rightarrow BEh_2$	0	0	0	0	0	0	0	0			
BEH₂Mo → FRh₂Va	0	0	0	0	0	0	0	0			
BG	98	0	97	0	98	0	97	0			
$BGh_2 \rightarrow GRh_2$	98	0	97	0	98	0	97	0			
$BGh_2 \rightarrow MKh_2$	0	0	0	0	0	0	0	0			
BGh ₂ → ROh ₂	0	0	0	0	0	0	0	0			
СН	0	0	0	0	0	0	0	0			
$CHh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0			
$CHh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0			
CHh ₂ → IB-ITh ₂	0	0	0	0	0	0	0	0			
CY	0	0	0	0	0	0	0	0			
$CYh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0			

JANUARY		INFRASTRUCTURE LEVEL								
JANOAKI		ADVA	NCED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWh	ı/M						
CZ	0	37	0	336	0	164	0	460		
$CZh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0		
$CZh_2 \rightarrow DEh_2$	0	37	0	336	0	164	0	460		
CZh ₂ → IB-SKh ₂ W	0	0	0	0	0	0	0	0		
$CZh_2 \rightarrow PLh_2S$	0	0	0	0	0	0	0	0		
DE	3,564	2,486	1,299	1,313	2,997	1,224	680	865		
$DEh_2 \rightarrow ATh_2$	29	150	2	82	185	108	58	125		
$DEh_2 \rightarrow BEh_2$	475	38	22	1	330	105	13	7		
$DEh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0		
$DEh_2 \rightarrow CZh_2$	447	1,024	135	290	397	423	119	96		
$DEh_2 \rightarrow DKh_2$	187	50	184	32	94	50	56	34		
$DEh_2 \rightarrow FRh_2$	46	23	135	17	21	37	81	24		
$DEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0		
$DEh_2 \rightarrow NLh_2$	117	27	12	90	63	38	0	195		
$DEh_2 \rightarrow PLh_2N$	556	334	246	160	0	0	0	0		
DEh ₂ → PLh ₂ nbc	730	536	208	248	1,157	464	338	384		
$DEh_2 \rightarrow Y-NOh_2$	0	0	0	0	0	0	0	0		
DEh₂ba → DEh₂	0	0	0	0	0	0	0	0		
$DEh_2bp \rightarrow DEh_2$	103	303	352	392	0	0	0	0		
DEh₂bp → DEh₂ba	0	0	0	0	0	0	0	0		
DEZ1a → DEZ1b	875		3		749		16			
DK	883	2,148	277	990	919	2,147	260	1,041		
$DKh_2 \rightarrow DEh_2$	883	2,148	277	990	919	2,147	260	1,041		
$DKh_2 \rightarrow PLh_2N$	0	0	0	0	0	0	0	0		
$DKh_2 \rightarrow SEh_2$	0	0	0	0	0	0	0	0		
EE	149	4,196	110	2,516	114	3,970	52	2,619		
$EEh_2 \rightarrow FIh_2S$	2	0	44	0	2	0	18	0		
$EEh_2 \rightarrow LVh_2$	147	4,196	66	2,516	112	3,970	35	2,619		

JANUARY		INFRASTRUCTURE LEVEL									
		ADVAN	NCED			PCI/	PMI				
				CLIMAT	E YEAR						
	19	95	20	009	19	95	20	009			
				SIMULAT	ION YEAR						
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040			
			Unit: GW	n/M							
ES	5,191	6,292	3,206	4,918	5,231	6,348	3,165	4,955			
$ESh_2 \rightarrow FRh_2S$	5,148	6,049	3,160	4,738	5,187	6,109	3,114	4,770			
$ESh_2 \rightarrow FRh_2SW$	0	0	0	0	0	0	0	0			
$ESh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0			
$ESh_2 \rightarrow PTh_2$	43	242	46	180	44	240	52	185			
FI	8,254	25,075	6,734	22,076	8,314	25,270	6,716	22,32			
Flh ₂ → Flh ₂ Al	1,953	5,666	1,744	5,466	2,002	5,807	1,804	5,548			
$Flh_2 \rightarrow Flh_2N$	0	0	3	25	0	0	0	11			
$Flh_2 \rightarrow Flh_2S$	50	14	7	5	46	0	3	0			
Flh ₂ Al → DEh ₂	3,618	7,343	2,698	6,161	3,622	7,523	2,632	6,272			
Flh ₂ Al → Flh ₂	89	66	34	16	84	19	27	8			
$Flh_2Al \rightarrow PLh_2N$	0	0	0	0	0	0	0	0			
$Flh_2Al \rightarrow SEh_2$	0	0	9	28	0	0	0	45			
$Flh_2N \rightarrow Flh_2$	1,664	1,943	1,433	1,439	1,669	1,995	1,441	1,483			
$Flh_2N \rightarrow SEh_2$	8	307	27	790	12	295	22	690			
$Flh_2S \rightarrow EEh_2$	186	4,426	98	2,707	151	4,199	66	2,807			
$Flh_2S \rightarrow Flh_2$	687	5,309	682	5,437	729	5,432	721	5,458			
$Flh_2S \rightarrow Flh_2SZ1$	0	0	0	0	0	0	0	0			
Flh ₂ SZ1 → Flh ₂ S	0	0	0	0	0	0	0	0			
FR	9,682	9,568	5,409	8,341	9,797	9,731	5,343	8,642			
$FRh_2 \rightarrow BEh_2$	0	189	0	92	0	340	0	117			
$FRh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0			
$FRh_2 \rightarrow DEh_2$	4,377	2,668	2,153	2,354	4,496	2,661	2,180	2,571			
$FRh_2 \rightarrow FRh_2N$	0	0	0	0	0	0	0	0			
$FRh_2 \rightarrow FRh_2S$	26	14	33	1	15	27	26	3			
FRh ₂ → FRh ₂ SW	0	0	0	0	0	0	0	0			
FRh ₂ → FRh ₂ Va	24	0	32	0	10	0	12	0			
$FRh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0			
$FRh_2N \rightarrow BEh_2$	0	875	0	1,422	0	770	0	1,380			
$FRh_2N \rightarrow FRh_2$	0	0	0	0	0	0	0	0			
$FRh_2S \rightarrow ESh_2$	23	13	37	0	13	26	30	1			
$FRh_2S \rightarrow FRh_2$	5,099	5,543	3,101	4,347	5,141	5,647	3,063	4,443			
FRh ₂ S → FRh ₂ SW	0	0	0	0	0	0	0	0			
$FRh_2SW \rightarrow ESh_2$	0	0	0	0	0	0	0	0			
$FRh_2SW \rightarrow FRh_2$	0	0	0	0	0	0	0	0			
FRh ₂ SW → FRh ₂ S	0	0	0	0	0	0	0	0			
FRh ₂ Va → BEH ₂ Mo	103	211	48	98	90	205	28	100			
FRh ₂ Va → FRh ₂	30	55	4	26	32	54	4	27			

JANUARY		INFRASTRUCTURE LEVEL									
JANOAKI		ADVAN	ICED			PCI/	PMI				
				CLIMAT	E YEAR						
	19	95	2	009	19	95	2	009			
				SIMULAT	ION YEAR						
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040			
			Unit: GWI	1/M							
GR	0	203	0	170	0	204	0	162			
$GRh_2 \rightarrow BGh_2$	0	203	0	170	0	204	0	162			
$GRh_2 \rightarrow CYh_2$	0	0	0	0	0	0	0	0			
$GRh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0			
HR	0	0	0	0	0	0	0	0			
HRh ₂ → ALh ₂	0	0	0	0	0	0	0	0			
$HRh_2 \rightarrow BAh_2$	0	0	0	0	0	0	0	0			
$HRh_2 \to HUh_2$	0	0	0	0	0	0	0	0			
$HRh_2 \to RSh_2$	0	0	0	0	0	0	0	0			
$HRh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0			
HU	674	720	190	217	0	0	0	0			
$HUh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0			
$HUh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0			
HUh₂ → IB-SKh₂C	0	0	0	60	0	0	0	0			
$HUh_2 \rightarrow ROh_2$	674	720	190	157	0	0	0	0			
$HUh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0			
$HUh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0			
IB	5,936	14,190	4,799	14,372	685	14,775	376	15,797			
$IB\text{-}ITh_2 \to ATh_2$	3,578	3,945	3,953	3,561	685	3,946	376	3,575			
$IB-ITh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0			
$IB-ITh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0			
$IB\text{-}SKh_2C \rightarrow HUh_2$	992	2,546	278	1,758	0	0	0	0			
$IB-SKh_2C \rightarrow SKh_2E$	81	5	45	1	0	26	0	3			
$IB-SKh_2C \rightarrow SKh_2W$	0	1,563	0	2,477	0	3,590	0	4,141			
$IB-SKh_2E \rightarrow PLh_2S$	0	0	0	0	0	0	0	0			
$IB-SKh_2E \rightarrow SKh_2E$	0	4,277	0	4,427	0	3,847	0	4,391			
$IB-SKh_2W \rightarrow ATh_2$	0	121	0	684	0	170	0	818			
$IB-SKh_2W \rightarrow CZh_2$	49	1,595	103	1,447	0	3,116	0	2,861			
IB-SKh ₂ W → SKh ₂ W	1,236	139	420	18	0	80	0	9			
IE	0	0	0	0	0	0	0	0			
IEh ₂ → UKh ₂	0	0	0	0	0	0	0	0			
IT	3,578	3,945	3,953	3,561	685	3,946	376	3,575			
$ITh_2 \to ESh_2$	0	0	0	0	0	0	0	0			
$ITh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0			
$ITh_2 \to IB\text{-}ITh_2$	3,578	3,945	3,953	3,561	685	3,946	376	3,575			
ITh ₂ → MTh ₂	0	0	0	0	0	0	0	0			
$ITh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0			

JANUARY		INFRASTRUCTURE LEVEL								
JANOAKI		ADVAI	NCED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWI	1/M						
LT	4	3,718	48	2,163	6	3,507	23	2,305		
$LTh_2 \rightarrow LVh_2$	4	1	48	1	5	1	22	1		
$LTh_2 \rightarrow PLh_2nbc$	0	3,718	0	2,162	2	3,506	2	2,304		
LU	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
LV	72	3,886	73	2,300	51	3,661	35	2,406		
$LVh_2 \rightarrow EEh_2$	3	0	45	0	3	0	19	0		
$LVh_2 \rightarrow LTh_2$	69	3,886	28	2,300	48	3,661	16	2,406		
MT	0	0	0	0	0	0	0	0		
$MTh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0		
NL	819	4,332	2,140	3,076	1,192	3,351	2,224	2,483		
NLh ₂ → BEh ₂	221	798	55	260	230	1,437	44	368		
$NLh_2 \rightarrow DEh_2$	598	3,534	2,085	2,816	962	1,914	2,179	2,115		
$NLh_2 \rightarrow UKh_2$	0	0	0	0	0	0	0	0		
PL	730	4,311	209	2,471	1,159	3,970	339	2,693		
$PLh_2N \rightarrow DEh_2$	0	7	1	45	0	0	0	0		
$PLh_2N \rightarrow DKh_2$	0	0	0	0	0	0	0	0		
$PLh_2N \rightarrow FIh_2AI$	0	0	0	0	0	0	0	0		
$PLh_2N \rightarrow PLh_2S$	0	50	0	12	0	0	0	0		
PLh₂nbc → DEh₂	0	623	0	686	1	1,472	2	1,219		
PLh ₂ nbc → LTh ₂	15	0	63	0	14	0	34	0		
$PLh_2nbc \rightarrow PLh_2N$	715	3,631	145	1,726	1,144	2,497	303	1,471		
PLh₂nbc → PLh₂S	0	0	0	0	0	0	0	0		
$PLh_2S \rightarrow CZh_2$	0	0	0	0	0	0	0	0		
PLh ₂ S → IB-SKh ₂ E	0	0	0	0	0	0	0	0		
$PLh_2S \rightarrow PLh_2N$	0	0	0	0	0	0	0	0		
PLh ₂ S → PLh ₂ nbc	0	0			0	0	0	2		
PT 501	390	0	230	0	391	0	215	0		
$PTh_2 \rightarrow ESh_2$	390	0	230	0	391	0	215	0		
RO	0	0	0	19	0	0	0	0		
$ROh_2 \rightarrow BGh_2$	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow HUh_2$	0	0	0	19	0	0	0	0		
$ROh_2 \rightarrow MDh_2$	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0		

JANUARY				NFRASTRUC	TURE LEVEL			
		ADVA	NCED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	20	009	19	95	20	009
				SIMULAT	ON YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GWh	n/M				
SE	1,763	1,758	1,002	742	1,711	1,738	861	779
$SEh_2 \rightarrow DKh_2$	0	0	0	0	0	0	0	0
$SEh_2 \rightarrow FIh_2AI$	1,754	1,743	997	740	1,704	1,735	856	776
$SEh_2 \rightarrow FIh_2N$	9	14	5	2	7	2	5	3
SI	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0
$Slh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0
SK	1,073	5,147	323	6,155	0	6,706	0	7,812
SKh ₂ E → IB-SKh ₂ C	0	4,000	0	4,161	0	3,590	0	4,141
$SKh_2E \rightarrow IB-SKh_2E$	0	0	0	0	0	0	0	0
$SKh_2W \rightarrow IB-SKh_2C$	1,073	114	323	14	0	26	0	3
SKh₂W → IB-SKh₂W	0	1,033	0	1,979	0	3,090	0	3,668
UK	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow IEh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow NLh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow UKh_2/INT$	0	0	0	0	0	0	0	0
$UKh_2/INT \rightarrow BEh_2$	0	0	0	0	0	0	0	0
$UKh_2/INT \rightarrow UKh_2$	0	0	0	0	0	0	0	0

FEBRUARY		INFRASTRUCTURE LEVEL									
IEDROARI		ADVA	NCED			PCI/	PMI				
				CLIMAT	E YEAR						
	19	95	2	009	19	95	2	009			
				SIMULAT	ION YEAR						
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040			
			Unit: GWI	h/M							
AT	2,649	2,116	3,437	1,703	326	1,978	617	1,647			
$ATh_2 \rightarrow CZh_2$	0	0	0	0	0	0	0	0			
$ATh_2 \rightarrow DEh_2$	1,402	1,119	2,877	1,432	326	1,463	617	1,587			
$ATh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0			
$ATh_2 \rightarrow IB-ITh_2$	0	61	0	2	0	66	0	6			
$ATh_2 \rightarrow IB\text{-}SKh_2W$	1,246	937	561	270	0	449	0	54			
$ATh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0			
BE	5	1,062	47	1,722	86	931	611	1,776			
$BEh_2 \rightarrow BEH_2Mo$	0	0	0	0	0	0	0	0			
$BEh_2 \rightarrow DEh_2$	5	729	47	1,138	86	522	611	1,030			
$BEh_2 \rightarrow FRh_2$	0	238	0	205	0	228	0	213			
$BEh_2 \rightarrow FRh_2N$	0	0	0	0	0	0	0	0			
$BEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0			
$BEh_2 \rightarrow NLh_2$	0	95	0	379	0	181	0	533			
$BEh_2 \rightarrow UKh_2/INT$	0	0	0	0	0	0	0	0			
$BEH_2Mo \rightarrow BEh_2$	0	0	0	0	0	0	0	0			
BEH₂Mo → FRh₂Va	0	0	0	0	0	0	0	0			
BG	86	0	84	0	85	0	84	0			
$BGh_2 \rightarrow GRh_2$	86	0	84	0	85	0	84	0			
$BGh_2 \rightarrow MKh_2$	0	0	0	0	0	0	0	0			
BGh ₂ → ROh ₂	0	0	0	0	0	0	0	0			
СН	0	0	0	0	0	0	0	0			
$CHh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0			
$CHh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0			
$CHh_2 \rightarrow IB-ITh_2$	0	0	0	0	0	0	0	0			
СУ	0	0	0	0	0	0	0	0			
$CYh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0			
CZ	0	48	0	226	0	162	0	539			
$CZh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0			
$CZh_2 \rightarrow DEh_2$	0	48	0	226	0	162	0	539			
CZh₂ → IB-SKh₂W	0	0	0	0	0	0	0	0			
$CZh_2 \rightarrow PLh_2S$	0	0	0	0	0	0	0	0			

FEBRUARY				NFRASTRUC	TURE LEVEL			
IEBROARI		ADVA	NCED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	20	009	19	95	20	009
				SIMULAT	ION YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GW	ı/M				
DE	3,530	4,078	1,507	1,749	3,226	2,712	852	1,362
$DEh_2 \rightarrow ATh_2$	51	508	1	42	233	438	38	121
$DEh_2 \rightarrow BEh_2$	462	65	47	3	322	253	24	45
$DEh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0
$DEh_2 \rightarrow CZh_2$	446	1,509	157	334	439	523	130	33
$DEh_2 \rightarrow DKh_2$	100	3	217	72	85	7	108	111
$DEh_2 \rightarrow FRh_2$	284	660	184	328	165	745	97	372
$DEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0
$DEh_2 \rightarrow NLh_2$	149	81	10	114	93	247	2	248
$DEh_2 \rightarrow PLh_2N$	536	433	261	149	0	0	0	0
DEh ₂ → PLh ₂ nbc	881	578	289	349	1,385	500	411	432
$DEh_2 \rightarrow Y-NOh_2$	0	0	0	0	0	0	0	0
DEh₂ba → DEh₂	0	0	0	0	0	0	0	0
$DEh_2bp \rightarrow DEh_2$	14	241	301	358	0	0	0	0
DEh₂bp → DEh₂ba	0	0	0	0	0	0	0	0
DEZ1a → DEZ1b	606		39		504		43	
DK	1,172	2,415	308	722	1,176	2,415	274	734
$DKh_2 \rightarrow DEh_2$	1,172	2,415	308	722	1,176	2,415	274	734
$DKh_2 \rightarrow PLh_2N$	0	0	0	0	0	0	0	0
$DKh_2 \rightarrow SEh_2$	0	0	0	0	0	0	0	0
EE	200	4,014	144	1,565	175	3,813	112	1,617
EEh₂ → FIh₂S	73	0	75	0	55	0	76	0
$EEh_2 \rightarrow LVh_2$	127	4,014	69	1,565	120	3,813	36	1,617
ES	3,934	5,032	3,204	4,485	4,062	5,083	3,181	4,754
$ESh_2 \rightarrow FRh_2S$	3,880	4,785	3,134	4,267	4,014	4,833	3,115	4,568
$ESh_2 \rightarrow FRh_2SW$	0	0	0	0	0	0	0	0
$ESh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0
$ESh_2 \rightarrow PTh_2$	54	247	70	218	48	250	66	187

FEBRUARY	INFRASTRUCTURE LEVEL									
ILDROAKI		ADVA	NCED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	2	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWI	1/M						
FI	6,991	21,001	4,304	16,088	7,013	21,094	4,262	16,463		
$Flh_2 \rightarrow Flh_2Al$	1,619	4,264	1,113	4,025	1,635	4,359	1,130	4,166		
$Flh_2 \rightarrow Flh_2N$	3	0	2	6	0	0	0	11		
$Flh_2 \rightarrow Flh_2S$	54	47	33	61	45	23	17	51		
$Flh_2Al \rightarrow DEh_2$	3,058	6,495	1,577	4,432	3,092	6,649	1,576	4,572		
Flh ₂ Al → Flh ₂	98	154	57	91	85	87	34	96		
Flh ₂ Al → PLh ₂ N	0	0	0	0	0	0	0	0		
Flh ₂ Al → SEh ₂	14	0	17	12	0	0	0	12		
$Flh_2N \rightarrow Flh_2$	1,372	1,627	923	993	1,392	1,607	912	1,076		
$Flh_2N \rightarrow SEh_2$	7	151	25	664	10	150	47	598		
Flh ₂ S → EEh ₂	163	4,234	93	1,711	156	4,032	59	1,761		
$Flh_2S \rightarrow Flh_2$	603	4,030	465	4,093	600	4,188	488	4,121		
Flh₂S → Flh₂SZ1	0	0	0	0	0	0	0	0		
Flh ₂ SZ1 → Flh ₂ S	0	0	0	0	0	0	0	0		
FR	7,835	8,662	5,188	7,657	8,025	8,480	5,171	7,975		
$FRh_2 \rightarrow BEh_2$	0	187	0	47	0	366	0	101		
$FRh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0		
$FRh_2 \rightarrow DEh_2$	3,414	2,251	1,953	2,042	3,676	2,018	2,012	2,122		
$FRh_2 \rightarrow FRh_2N$	0	0	0	0	0	0	0	0		
FRh ₂ → FRh ₂ S	233	450	8	61	128	489	3	61		
FRh ₂ → FRh ₂ SW	0	0	0	0	0	0	0	0		
$FRh_2 \rightarrow FRh_2Va$	12	0	44	0	10	0	22	2		
FRh ₂ → LUh ₂	0	0	0	0	0	0	0	0		
$FRh_2N \rightarrow BEh_2$	0	529	0	1,302	0	380	0	1,241		
$FRh_2N \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
$FRh_2S \rightarrow ESh_2$	251	431	16	52	143	469	8	52		
$FRh_2S \rightarrow FRh_2$	3,795	4,540	3,110	4,014	3,940	4,486	3,089	4,255		
$FRh_2S \rightarrow FRh_2SW$	0	0	0	0	0	0	0	0		
$FRh_2SW \rightarrow ESh_2$	0	0	0	0	0	0	0	0		
$FRh_2SW \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
$FRh_2SW \rightarrow FRh_2S$	0	0	0	0	0	0	0	0		
FRh ₂ Va → BEH ₂ Mo	98	211	54	110	96	211	35	113		
FRh ₂ Va → FRh ₂	32	62	3	28	33	61	3	28		
GR	0	226	0	309	0	227	0	310		
$GRh_2 \rightarrow BGh_2$	0	226	0	309	0	227	0	310		
$GRh_2 \rightarrow BGh_2$ $GRh_2 \rightarrow CYh_2$	0	0	0	0	0	0	0	0		
		0	0			0				
$GRh_2 \rightarrow ITh_2$	0	U	U	0	0	U	0	0		

FEBRUARY		INFRASTRUCTURE LEVEL									
		ADVAN	ICED			PCI/I	PMI				
				CLIMAT	E YEAR						
	19	95	20	009	19	95	2	009			
				SIMULAT	ION YEAR						
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040			
			Unit: GW	n/M							
HR	0	0	0	0	0	0	0	0			
HRh ₂ → ALh ₂	0	0	0	0	0	0	0	0			
$HRh_2 \rightarrow BAh_2$	0	0	0	0	0	0	0	0			
HRh ₂ → HUh ₂	0	0	0	0	0	0	0	0			
$HRh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0			
$HRh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0			
HU	716	938	238	265	0	0	0	0			
$HUh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0			
$HUh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0			
HUh ₂ → IB-SKh ₂ C	0	31	0	35	0	0	0	0			
$HUh_2 \rightarrow ROh_2$	716	907	238	230	0	0	0	0			
$HUh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0			
$HUh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0			
IB	5,398	12,476	4,843	13,304	547	12,778	911	14,850			
$IB\text{-}ITh_2 \to ATh_2$	3,060	3,184	3,894	3,614	547	3,175	911	3,612			
$IB-ITh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0			
$IB-ITh_2 \rightarrow ITh_2$	0	61	0	2	0	66	0	6			
$IB-SKh_2C \rightarrow HUh_2$	1,018	2,527	343	1,739	0	0	0	0			
$IB\text{-}SKh_2C \rightarrow SKh_2E$	74	8	45	0	0	32	0	0			
$IB-SKh_2C \rightarrow SKh_2W$	0	1,205	0	2,067	0	3,091	0	3,801			
$IB-SKh_2E \rightarrow PLh_2S$	0	0	0	0	0	0	0	0			
$IB-SKh_2E \rightarrow SKh_2E$	0	3,822	0	4,018	0	3,310	0	4,028			
IB-SKh ₂ W → ATh ₂	0	65	0	411	0	126	0	422			
IB-SKh ₂ W → CZh ₂	8	1,442	79	1,453	0	2,878	0	2,987			
IB-SKh₂W → SKh₂W	1,238	162	482	0	0	101	0	0			
IE	0	0	0	0	0	0	0	0			
IEh ₂ → UKh ₂	0	0	0	0	0	0	0	0			
IT	3,060	3,184	3,894	3,614	547	3,175	911	3,612			
$ITh_2 \rightarrow ESh_2$	0	0	0	0	0	0	0	0			
$ITh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0			
$ITh_2 \to IB\text{-}ITh_2$	3,060	3,184	3,894	3,614	547	3,175	911	3,612			
$ITh_2 \rightarrow MTh_2$	0	0	0	0	0	0	0	0			
$ITh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0			
LT	82	3,705	82	1,293	66	3,476	85	1,345			
$LTh_2 \rightarrow LVh_2$	82	0	82	2	66	0	85	2			
LTh ₂ → PLh ₂ nbc	0	3,705	0	1,291	0	3,475	0	1,343			

FEBRUARY	INFRASTRUCTURE LEVEL								
FEDRUARI		ADVA	ICED			PCI/	PMI		
				CLIMAT	E YEAR				
	19	95	20	009	19	95	20	009	
				SIMULAT	ION YEAR				
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040	
			Unit: GWI	ı/M					
LU	0	0	0	0	0	0	0	0	
$LUh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0	
$LUh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0	
$LUh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0	
LV	132	3,723	111	1,411	110	3,522	94	1,468	
$LVh_2 \rightarrow EEh_2$	76	0	78	0	59	0	79	0	
$LVh_2 \rightarrow LTh_2$	56	3,723	33	1,411	51	3,522	15	1,468	
МТ	0	0	0	0	0	0	0	0	
$MTh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0	
NL	571	4,341	1,693	1,954	815	3,421	1,751	1,343	
$NLh_2 \rightarrow BEh_2$	339	1,011	90	205	387	1,610	62	274	
$NLh_2 \rightarrow DEh_2$	232	3,330	1,603	1,749	428	1,811	1,689	1,069	
$NLh_2 \rightarrow UKh_2$	0	0	0	0	0	0	0	0	
PL	881	4,328	289	1,728	1,385	3,975	411	1,842	
$PLh_2N \rightarrow DEh_2$	0	0	0	49	0	0	0	0	
$PLh_2N \rightarrow DKh_2$	0	0	0	0	0	0	0	0	
$PLh_2N \rightarrow FIh_2AI$	0	0	0	0	0	0	0	0	
$PLh_2N \rightarrow PLh_2S$	0	45	0	11	0	0	0	0	
$PLh_2nbc \rightarrow DEh_2$	0	556	0	240	0	1,431	0	648	
PLh₂nbc → LTh₂	96	0	89	0	79	0	91	0	
PLh₂nbc → PLh₂N	785	3,727	200	1,413	1,306	2,544	320	1,161	
PLh₂nbc → PLh₂S	0	0	0	0	0	0	0	0	
$PLh_2S \rightarrow CZh_2$	0	0	0	0	0	0	0	0	
PLh ₂ S → IB-SKh ₂ E	0	0	0	0	0	0	0	0	
$PLh_2S \rightarrow PLh_2N$	0	0	0	0	0	0	0	0	
PLh₂S → PLh₂nbc	0	0	0	14	0	0	0	34	
PT	334	0	245	6	337	0	248	6	
PTh ₂ → ESh ₂	334	0	245	6	337	0	248	6	
RO	0	14	0	14	0	0	0	0	
$ROh_2 \rightarrow BGh_2$	0	0	0	0	0	0	0	0	
$ROh_2 \rightarrow HUh_2$	0	14	0	14	0	0	0	0	
$ROh_2 \rightarrow MDh_2$	0	0	0	0	0	0	0	0	
$ROh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0	
SE	1,560	2,411	543	543	1,551	2,388	484	525	
$SEh_2 \rightarrow DKh_2$	0	0	0	0	0	0	0	0	
$SEh_2 \rightarrow FIh_2AI$	1,551	2,386	538	510	1,542	2,377	480	513	
$SEh_2 \rightarrow FIh_2N$	9	25	5	33	9	10	4	11	

FEBRUARY	INFRASTRUCTURE LEVEL										
	ADVANCED PCI/PMI										
	CLIMATE YEAR										
	19	95	2	009	19	95	20	009			
				SIMULAT	ION YEAR						
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040			
			Unit: GWI	1/M							
SI	0	0	0	0	0	0	0	0			
$Slh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0			
$Slh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0			
$Slh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0			
$Slh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0			
SK	1,091	4,442	388	5,365	0	5,779	0	7,156			
$SKh_2E \rightarrow IB-SKh_2C$	0	3,578	0	3,771	0	3,091	0	3,801			
$SKh_2E \rightarrow IB-SKh_2E$	0	0	0	0	0	0	0	0			
$SKh_2W \rightarrow IB-SKh_2C$	1,091	131	388	0	0	32	0	0			
SKh₂W → IB-SKh₂W	0	733	0	1,594	0	2,656	0	3,355			
UK	0	0	0	0	0	0	0	0			
$UKh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0			
$UKh_2 \rightarrow IEh_2$	0	0	0	0	0	0	0	0			
$UKh_2 \rightarrow NLh_2$	0	0	0	0	0	0	0	0			
UKh ₂ → UKh ₂ /INT	0	0	0	0	0	0	0	0			
				_			_	_			
$UKh_2/INT \rightarrow BEh_2$	0	0	0	0	0	0	0	0			

MARCH	INFRASTRUCTURE LEVEL											
MARCH	ADVANCED PCI/PMI											
				CLIMAT	E YEAR							
	19	95	20	009	19	95	2	009				
		SIMULATION YEAR										
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040				
			Unit: GW	ı/M								
AT	3,317	3,460	3,895	3,236	606	3,137	789	3,172				
$ATh_2 \rightarrow CZh_2$	0	0	0	0	0	0	0	0				
$ATh_2 \rightarrow DEh_2$	2,118	1,594	3,062	2,173	606	1,975	789	2,658				
$ATh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0				
$ATh_2 \rightarrow IB-ITh_2$	0	0	0	0	0	0	0	0				
ATh ₂ → IB-SKh ₂ W	1,199	1,866	834	1,063	0	1,162	0	514				
$ATh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0				
BE	11	554	30	1,389	127	506	486	1,275				
BEh₂ → BEH₂Mo	0	0	0	0	0	0	0	0				
$BEh_2 \rightarrow DEh_2$	11	348	30	1,084	127	307	486	841				
$BEh_2 \rightarrow FRh_2$	0	149	0	199	0	107	0	188				
BEh ₂ → FRh ₂ N	0	0	0	0	0	0	0	0				
BEh ₂ → LUh ₂	0	0	0	0	0	0	0	0				
$BEh_2 \rightarrow NLh_2$	0	57	0	106	0	92	0	246				
BEh₂ → UKh₂/INT	0	0	0	0	0	0	0	0				
BEH₂Mo → BEh₂	0	0	0	0	0	0	0	0				
BEH₂Mo → FRh₂Va	0	0	0	0	0	0	0	0				
BG	99	0	99	0	98	0	99	0				
$BGh_2 \rightarrow GRh_2$	99	0	99	0	98	0	99	0				
$BGh_2 \rightarrow MKh_2$	0	0	0	0	0	0	0	0				
$BGh_2 \rightarrow ROh_2$	0	0	0	0	0	0	0	0				
СН	0	0	0	0	0	0	0	0				
CHh₂ → DEh₂	0	0	0	0	0	0	0	0				
CHh₂ → FRh₂	0	0	0	0	0	0	0	0				
$CHh_2 \rightarrow IB-ITh_2$	0	0	0	0	0	0	0	0				
СУ	0	0	0	0	0	0	0	0				
$CYh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0				
CZ	0	0	0	0	0	274	0	599				
$CZh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0				
$CZh_2 \rightarrow DEh_2$	0	0	0	0	0	274	0	599				
CZh₂ → IB-SKh₂W	0	0	0	0	0	0	0	0				
CZh₂ → PLh₂S	0	0	0	0	0	0	0	0				

MARCH	INFRASTRUCTURE LEVEL										
MARCH	ADVANCED PCI/PMI										
	CLIMATE YEAR										
	19	95	20	009	19	95	20	009			
				SIMULAT	ION YEAR						
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040			
			Unit: GWI	1/M							
DE	4,292	4,929	2,900	3,083	3,958	3,562	1,956	2,367			
$DEh_2 \rightarrow ATh_2$	31	110	2	15	200	195	50	5			
$DEh_2 \rightarrow BEh_2$	655	447	142	44	495	638	142	178			
$DEh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0			
$DEh_2 \rightarrow CZh_2$	414	1,471	282	452	416	527	238	50			
$DEh_2 \rightarrow DKh_2$	166	165	372	178	143	152	131	190			
$DEh_2 \rightarrow FRh_2$	283	721	205	295	240	656	67	366			
$DEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0			
$DEh_2 \rightarrow NLh_2$	281	200	46	65	152	431	47	240			
$DEh_2 \rightarrow PLh_2N$	588	554	451	349	0	0	0	0			
DEh ₂ → PLh ₂ nbc	942	1,164	999	1,370	1,531	964	1,134	1,338			
$DEh_2 \rightarrow Y-NOh_2$	0	0	0	0	0	0	0	0			
DEh₂ba → DEh₂	0	0	0	0	0	0	0	0			
$DEh_2bp \rightarrow DEh_2$	18	98	243	316	0	0	0	0			
DEh₂bp → DEh₂ba	0	0	0	0	0	0	0	0			
DEZ1a → DEZ1b	915		159		782		147				
DK	1,106	2,532	370	1,429	1,146	2,505	396	1,387			
$DKh_2 \rightarrow DEh_2$	1,106	2,532	370	1,429	1,146	2,505	396	1,387			
$DKh_2 \rightarrow PLh_2N$	0	0	0	0	0	0	0	0			
$DKh_2 \rightarrow SEh_2$	0	0	0	0	0	0	0	0			
EE	224	4,224	581	1,965	196	3,764	348	1,635			
$EEh_2 \rightarrow FIh_2S$	63	0	507	0	50	0	305	0			
EEh ₂ → LVh ₂	161	4,224	74	1,965	146	3,764	43	1,635			
ES	4,733	5,320	3,692	5,208	4,795	5,606	3,683	5,134			
$ESh_2 \rightarrow FRh_2S$	4,696	5,076	3,653	4,992	4,760	5,348	3,648	4,914			
$ESh_2 \rightarrow FRh_2SW$	0	0	0	0	0	0	0	0			
$ESh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0			
$ESh_2 \rightarrow PTh_2$	37	244	39	216	35	258	36	221			

MARCH	INFRASTRUCTURE LEVEL										
MARCH	ADVANCED PCI/PMI										
		CLIMATE YEAR									
	19	95	20	009	19	95	2	009			
				SIMULAT	ION YEAR						
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040			
			Unit: GWI	h/M							
FI	7,188	22,555	4,363	14,974	7,011	22,594	4,247	15,471			
$Flh_2 \rightarrow Flh_2Al$	1,591	4,612	1,049	2,960	1,565	4,751	1,007	3,259			
$Flh_2 \rightarrow Flh_2N$	3	11	14	83	0	6	0	90			
$Flh_2 \rightarrow Flh_2S$	74	105	37	124	94	55	20	105			
Flh ₂ Al → DEh ₂	3,193	6,816	1,379	3,824	3,060	7,116	1,609	4,121			
Flh ₂ Al → Flh ₂	133	243	72	242	166	166	61	244			
$Flh_2Al \rightarrow PLh_2N$	0	0	0	0	0	0	0	0			
$Flh_2Al \rightarrow SEh_2$	12	7	146	125	0	12	0	113			
$Flh_2N \rightarrow Flh_2$	1,362	1,734	767	839	1,344	1,748	848	951			
$Flh_2N \rightarrow SEh_2$	8	173	154	999	9	198	141	946			
Flh ₂ S → EEh ₂	200	4,465	98	2,163	183	4,006	66	1,836			
$Flh_2S \rightarrow Flh_2$	613	4,389	647	3,615	589	4,537	494	3,806			
Flh₂S → Flh₂SZ1	0	0	0	0	0	0	0	0			
Flh₂SZ1 → Flh₂S	0	0	0	0	0	0	0	0			
FR	8,740	8,780	6,488	8,298	8,863	8,932	6,424	8,112			
$FRh_2 \rightarrow BEh_2$	0	640	0	171	0	715	0	300			
$FRh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0			
$FRh_2 \rightarrow DEh_2$	3,651	2,001	2,720	1,951	3,767	2,056	2,714	1,844			
FRh ₂ → FRh ₂ N	0	0	0	0	0	0	0	0			
FRh ₂ → FRh ₂ S	223	463	42	180	195	390	26	188			
FRh ₂ → FRh ₂ SW	0	0	0	0	0	0	0	0			
FRh ₂ → FRh ₂ Va	26	0	29	0	23	0	19	0			
$FRh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0			
$FRh_2N \rightarrow BEh_2$	0	271	0	986	0	241	0	900			
$FRh_2N \rightarrow FRh_2$	0	0	0	0	0	0	0	0			
$FRh_2S \rightarrow ESh_2$	217	409	41	155	188	351	24	155			
$FRh_2S \rightarrow FRh_2$	4,487	4,689	3,565	4,619	4,552	4,872	3,561	4,491			
FRh ₂ S → FRh ₂ SW	0	0	0	0	0	0	0	0			
$FRh_2SW \rightarrow ESh_2$	0	0	0	0	0	0	0	0			
$FRh_2SW \rightarrow FRh_2$	0	0	0	0	0	0	0	0			
$FRh_2SW \rightarrow FRh_2S$	0	0	0	0	0	0	0	0			
FRh ₂ Va → BEH ₂ Mo	108	229	75	181	107	229	64	179			
FRh ₂ Va → FRh ₂	29	78	17	54	31	78	17	55			
GR	2	406	0	360	3	411	0	361			
$GRh_2 \rightarrow BGh_2$	2	406	0	360	3	411	0	361			
$GRh_2 \rightarrow CYh_2$	0	0	0	0	0	0	0	0			
$GRh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0			
2	J	U	3	J		J	J	U			

MARCH	INFRASTRUCTURE LEVEL									
MARCH		ADVAN	NCED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWI	1/M						
HR	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow ALh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow BAh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0		
HRh ₂ → SIh ₂	0	0	0	0	0	0	0	0		
HU	716	1,468	423	847	0	0	0	0		
$HUh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0		
HUh ₂ → HRh ₂	0	0	0	0	0	0	0	0		
HUh₂ → IB-SKh₂C	0	0	0	0	0	0	0	0		
$HUh_2 \rightarrow ROh_2$	716	1,468	423	847	0	0	0	0		
$HUh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0		
$HUh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
IB	6,040	14,351	5,863	15,363	910	12,754	1,150	16,20		
$IB-ITh_2 \rightarrow ATh_2$	3,799	4,691	4,408	4,793	910	4,603	1,150	4,775		
IB-ITh ₂ → CHh ₂	0	0	0	0	0	0	0	0		
$IB-ITh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0		
$IB\text{-}SKh_2C \rightarrow HUh_2$	971	2,976	559	2,409	0	0	0	0		
$IB\text{-}SKh_2C \rightarrow SKh_2E$	71	47	62	8	0	96	0	22		
$IB\text{-}SKh_2C \rightarrow SKh_2W$	0	891	0	1,693	0	2,351	0	3,710		
$IB-SKh_2E \rightarrow PLh_2S$	0	0	0	0	0	0	0	0		
$IB-SKh_2E \rightarrow SKh_2E$	0	3,368	0	4,191	0	2,518	0	3,952		
$IB-SKh_2W \rightarrow ATh_2$	0	10	0	85	0	59	0	142		
$IB-SKh_2W \rightarrow CZh_2$	15	1,459	87	1,971	0	2,832	0	3,533		
$IB\text{-}SKh_2W \rightarrow SKh_2W$	1,183	910	747	213	0	296	0	66		
IE	0	0	0	0	0	0	0	0		
$IEh_2 \rightarrow UKh_2$	0	0	0	0	0	0	0	0		
IT	3,799	4,691	4,408	4,793	910	4,603	1,150	4,775		
$ITh_2 \to ESh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow IB-ITh_2$	3,799	4,691	4,408	4,793	910	4,603	1,150	4,775		
$ITh_2 \rightarrow MTh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
LT	71	3,679	543	1,556	62	3,218	340	1,197		
LTh ₂ → LVh ₂	71	0	543	3	62	1	339	4		
$LTh_2 \rightarrow PLh_2 nbc$	0	3,679	0	1,552	0	3,218	0	1,194		

MARCH	INFRASTRUCTURE LEVEL									
MARCH	ADVANCED PCI/PMI									
	CLIMATE YEAR									
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GW	n/M						
LU	0	0	0	0	0	0	0	0		
LUh ₂ → BEh ₂	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
LV	147	3,884	548	1,746	124	3,426	335	1,409		
LVh ₂ → EEh ₂	65	0	519	0	53	0	316	0		
$LVh_2 \rightarrow LTh_2$	82	3,884	29	1,746	71	3,426	18	1,409		
MT	0	0	0	0	0	0	0	0		
$MTh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0		
NL	515	3,720	1,612	3,293	751	3,388	1,682	2,511		
$NLh_2 \rightarrow BEh_2$	334	2,410	198	671	318	2,587	185	1,040		
$NLh_2 \rightarrow DEh_2$	181	1,310	1,414	2,622	433	801	1,498	1,470		
$NLh_2 \rightarrow UKh_2$	0	0	0	0	0	0	0	0		
PL	942	4,982	999	2,978	1,531	4,182	1,134	2,532		
$PLh_2N \rightarrow DEh_2$	0	0	0	1	0	0	0	0		
PLh ₂ N → DKh ₂	0	0	0	0	0	0	0	0		
PLh ₂ N → Flh ₂ Al	0	0	0	0	0	0	0	0		
$PLh_2N \rightarrow PLh_2S$	0	139	0	54	0	0	0	0		
PLh₂nbc → DEh₂	0	418	0	197	0	1,217	0	437		
PLh₂nbc → LTh₂	88	0	609	0	80	0	393	0		
PLh₂nbc → PLh₂N	854	4,425	390	2,725	1,451	2,965	741	2,094		
PLh₂nbc → PLh₂S	0	0	0	0	0	0	0	0		
$PLh_2S \rightarrow CZh_2$	0	0	0	0	0	0	0	0		
PLh ₂ S → IB-SKh ₂ E	0	0	0	0	0	0	0	0		
$PLh_2S \rightarrow PLh_2N$	0	0	0	0	0	0	0	0		
PLh ₂ S → PLh ₂ nbc	0	0	0	0	0	0	0	0		
PT	436	0	384	0	441	0	388	0		
$PTh_2 \rightarrow ESh_2$	436	0	384	0	441	0	388	0		
RO	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow BGh_2$	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow MDh_2$	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0		
SE	1,759	2,498	557	1,318	1,676	2,581	673	1,285		
$SEh_2 \rightarrow DKh_2$	0	0	0	0	0	0	0	0		
$SEh_2 \rightarrow FIh_2AI$	1,747	2,454	548	1,230	1,661	2,542	663	1,220		
$SEh_2 \rightarrow FIh_2N$	12	44	9	87	15	38	10	65		

MARCH	INFRASTRUCTURE LEVEL										
	ADVANCED PCI/PMI										
	CLIMATE YEAR										
	19	95	20	009	19	95	20	009			
				SIMULAT	ON YEAR						
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040			
			Unit: GWI	1/M							
SI	0	0	0	0	0	0	0	0			
$SIh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0			
$SIh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0			
$SIh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0			
$Slh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0			
SK	1,042	4,426	621	5,316	0	4,471	0	6,960			
SKh ₂ E → IB-SKh ₂ C	0	3,151	0	3,936	0	2,351	0	3,710			
SKh ₂ E → IB-SKh ₂ E	0	0	0	0	0	0	0	0			
SKh ₂ W → IB-SKh ₂ C	1,042	763	621	174	0	96	0	22			
SKh ₂ W → IB-SKh ₂ W	0	511	0	1,206	0	2,024	0	3,228			
UK	0	0	0	0	0	0	0	0			
$UKh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0			
$UKh_2 \rightarrow IEh_2$	0	0	0	0	0	0	0	0			
$UKh_2 \rightarrow NLh_2$	0	0	0	0	0	0	0	0			
UKh ₂ → UKh ₂ /INT	0	0	0	0	0	0	0	0			
UKh ₂ /INT → BEh ₂	0	0	0	0	0	0	0	0			
012 522											

APRIL	INFRASTRUCTURE LEVEL									
- · · · · · ·	ADVANCED PCI/PMI									
	CLIMATE YEAR									
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GW	n/M						
AT	3,033	4,116	3,293	3,550	303	3,805	473	3,255		
$ATh_2 \rightarrow CZh_2$	0	0	0	0	0	0	0	0		
$ATh_2 \rightarrow DEh_2$	2,186	1,680	2,555	1,677	280	2,498	467	2,361		
$ATh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0		
$ATh_2 \rightarrow IB-ITh_2$	0	0	0	0	23	9	6	38		
ATh ₂ → IB-SKh ₂ W	847	2,436	739	1,874	0	1,298	0	856		
$ATh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
BE	13	663	28	801	139	617	286	726		
BEh₂ → BEH₂Mo	0	0	0	0	0	0	0	0		
$BEh_2 \rightarrow DEh_2$	13	456	28	595	139	265	286	287		
$BEh_2 \rightarrow FRh_2$	0	165	0	134	0	144	0	139		
BEh ₂ → FRh ₂ N	0	0	0	0	0	0	0	0		
$BEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0		
$BEh_2 \rightarrow NLh_2$	0	42	0	72	0	208	0	299		
BEh ₂ → UKh ₂ /INT	0	0	0	0	0	0	0	0		
BEH₂Mo → BEh₂	0	0	0	0	0	0	0	0		
BEH₂Mo → FRh₂Va	0	0	0	0	0	0	0	0		
BG	109	0	110	0	109	0	110	0		
$BGh_2 \rightarrow GRh_2$	109	0	110	0	109	0	110	0		
$BGh_2 \rightarrow MKh_2$	0	0	0	0	0	0	0	0		
$BGh_2 \rightarrow ROh_2$	0	0	0	0	0	0	0	0		
СН	0	0	0	0	0	0	0	0		
$CHh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0		
$CHh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
$CHh_2 \rightarrow IB-ITh_2$	0	0	0	0	0	0	0	0		
СҮ	0	0	0	0	0	0	0	0		
CYh ₂ → GRh ₂	0	0	0	0	0	0	0	0		
CZ	0	1	0	7	0	438	0	687		
$CZh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0		
$CZh_2 \rightarrow DEh_2$	0	1	0	7	0	438	0	687		
CZh ₂ → IB-SKh ₂ W	0	0	0	0	0	0	0	0		
CZh ₂ → PLh ₂ S	0	0	0	0	0	0	0	0		

APRIL		INFRASTRUCTURE LEVEL									
ALKIE		ADVAI	NCED			PCI/	PMI				
				CLIMAT	E YEAR						
	19	95	20	009	19	95	20	009			
				SIMULAT	ION YEAR						
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040			
			Unit: GWI	ı/M							
DE	5,063	4,953	4,550	4,517	4,577	3,932	3,528	3,674			
$DEh_2 \rightarrow ATh_2$	2	33	1	58	242	8	166	37			
$DEh_2 \rightarrow BEh_2$	878	585	513	370	655	906	417	616			
$DEh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0			
$DEh_2 \rightarrow CZh_2$	335	1,014	312	658	315	317	246	180			
$DEh_2 \rightarrow DKh_2$	276	172	330	509	194	228	174	486			
$DEh_2 \rightarrow FRh_2$	291	678	474	188	193	651	150	194			
$DEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0			
$DEh_2 \rightarrow NLh_2$	533	510	271	543	384	669	201	708			
$DEh_2 \rightarrow PLh_2N$	568	491	559	429	0	0	0	0			
$DEh_2 \rightarrow PLh_2nbc$	935	1,338	1,103	1,574	1,414	1,153	1,376	1,452			
$DEh_2 \rightarrow Y-NOh_2$	0	0	0	0	0	0	0	0			
DEh₂ba → DEh₂	0	0	0	0	0	0	0	0			
$DEh_2bp \rightarrow DEh_2$	34	133	128	189	0	0	0	0			
DEh₂bp → DEh₂ba	0	0	0	0	0	0	0	0			
DEZ1a → DEZ1b	1,212		860		1,180		798				
DK	877	1,995	580	1,373	937	1,911	614	1,363			
$DKh_2 \rightarrow DEh_2$	877	1,995	580	1,373	937	1,911	614	1,363			
$DKh_2 \rightarrow PLh_2N$	0	0	0	0	0	0	0	0			
$DKh_2 \rightarrow SEh_2$	0	0	0	0	0	0	0	0			
EE	195	3,297	475	2,094	169	2,818	356	1,662			
EEh₂ → FIh₂S	76	0	352	0	60	0	264	0			
$EEh_2 \to LVh_2$	120	3,297	123	2,094	109	2,818	91	1,662			
ES	3,908	4,660	3,555	5,241	4,060	4,876	3,691	5,348			
ESh ₂ → FRh ₂ S	3,855	4,366	3,490	4,976	4,010	4,583	3,641	5,076			
ESh ₂ → FRh ₂ SW	0	0	0	0	0	0	0	0			
$ESh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0			
$ESh_2 \rightarrow PTh_2$	53	295	65	265	49	293	50	272			

APRIL		INFRASTRUCTURE LEVEL								
ALKIL		ADVA	NCED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWI	ı/M						
FI	6,384	19,154	5,255	14,531	6,592	19,177	5,379	14,782		
$Flh_2 \to Flh_2 Al$	1,397	3,868	1,185	2,921	1,448	4,076	1,224	3,177		
$Flh_2 \rightarrow Flh_2N$	2	57	11	78	0	69	0	89		
$Flh_2 \rightarrow Flh_2S$	114	152	49	131	118	89	41	52		
$Flh_2Al \rightarrow DEh_2$	2,771	5,663	2,101	3,651	2,891	5,847	2,267	3,966		
$Flh_2Al \to Flh_2$	199	288	107	246	193	199	108	159		
$Flh_2Al \rightarrow PLh_2N$	0	0	0	0	0	0	0	0		
$Flh_2Al \rightarrow SEh_2$	6	16	53	95	0	5	0	100		
$Flh_2N \rightarrow Flh_2$	1,178	1,255	970	1,006	1,220	1,410	1,023	1,059		
$Flh_2N \rightarrow SEh_2$	5	301	39	796	4	312	40	809		
$Flh_2S \rightarrow EEh_2$	153	3,512	150	2,282	142	3,034	118	1,854		
$Flh_2S \rightarrow Flh_2$	561	4,042	592	3,325	577	4,137	558	3,516		
$Flh_2S \rightarrow Flh_2SZ1$	0	0	0	0	0	0	0	0		
$Flh_2SZ1 \rightarrow Flh_2S$	0	0	0	0	0	0	0	0		
FR	7,121	7,861	6,305	8,009	7,555	8,167	6,496	8,211		
FRh ₂ → BEh ₂	0	546	0	489	0	653	0	583		
FRh ₂ → CHh ₂	0	0	0	0	0	0	0	0		
$FRh_2 \rightarrow DEh_2$	2,909	1,730	2,611	1,943	3,176	1,709	2,770	1,905		
$FRh_2 \rightarrow FRh_2N$	0	0	0	0	0	0	0	0		
FRh ₂ → FRh ₂ S	143	442	80	106	151	440	39	120		
FRh ₂ → FRh ₂ SW	0	0	0	0	0	0	0	0		
FRh ₂ → FRh ₂ Va	25	0	39	0	17	0	21	0		
$FRh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0		
$FRh_2N \rightarrow BEh_2$	0	410	0	623	0	378	0	557		
$FRh_2N \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
$FRh_2S \rightarrow ESh_2$	155	409	82	93	159	416	32	111		
$FRh_2S \rightarrow FRh_2$	3,761	4,039	3,376	4,497	3,926	4,282	3,537	4,674		
$FRh_2S \rightarrow FRh_2SW$	0	0	0	0	0	0	0	0		
$FRh_2SW \rightarrow ESh_2$	0	0	0	0	0	0	0	0		
$FRh_2SW \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
$FRh_2SW \rightarrow FRh_2S$	0	0	0	0	0	0	0	0		
FRh₂Va → BEH₂Mo	103	204	98	184	97	206	78	188		
FRh ₂ Va → FRh ₂	25	82	19	73	29	82	21	73		
GR	0	297	0	288	0	312	0	291		
$GRh_2 \rightarrow BGh_2$	0	297	0	288	0	312	0	291		
$GRh_2 \rightarrow CYh_2$	0	0	0	0	0	0	0	0		
$GRh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0		

APRIL				INFRASTRUC	TURE LEVEL	·		
		ADVAN	ICED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	20	009	19	95	20	009
				SIMULAT	ION YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GWI	ı/M				
HR	0	0	0	0	0	0	0	0
$HRh_2 \rightarrow ALh_2$	0	0	0	0	0	0	0	0
$HRh_2 \rightarrow BAh_2$	0	0	0	0	0	0	0	0
$HRh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0
$HRh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0
$HRh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0
HU	562	1,561	499	1,401	0	0	0	0
$HUh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0
HUh ₂ → HRh ₂	0	0	0	0	0	0	0	0
HUh₂ → IB-SKh₂C	0	0	0	0	0	0	0	0
$HUh_2 \rightarrow ROh_2$	562	1,561	499	1,401	0	0	0	0
$HUh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0
$HUh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0
IB	5,118	13,818	5,149	14,215	543	11,402	718	13,09
$IB-ITh_2 \rightarrow ATh_2$	3,528	4,984	3,791	4,843	520	4,723	712	4,656
IB-ITh ₂ → CHh ₂	0	0	0	0	0	0	0	0
$IB-ITh_2 \rightarrow ITh_2$	0	0	0	0	23	9	6	38
$IB\text{-}SKh_2C \rightarrow HUh_2$	694	2,687	570	2,535	0	0	0	0
$IB-SKh_2C \rightarrow SKh_2E$	49	104	49	73	0	121	0	84
$IB\text{-}SKh_2C \rightarrow SKh_2W$	0	830	0	1,163	0	1,783	0	2,535
$IB-SKh_2E \rightarrow PLh_2S$	0	0	0	0	0	0	0	0
$IB-SKh_2E \rightarrow SKh_2E$	0	2,166	0	2,861	0	1,888	0	2,678
$IB-SKh_2W \rightarrow ATh_2$	0	1	0	4	0	18	0	24
$IB-SKh_2W \rightarrow CZh_2$	5	1,234	20	1,516	0	2,489	0	2,830
$IB\text{-}SKh_2W \rightarrow SKh_2W$	842	1,812	719	1,221	0	371	0	252
IE	0	0	0	0	0	0	0	0
$IEh_2 \to UKh_2$	0	0	0	0	0	0	0	0
IT	3,528	4,984	3,791	4,843	520	4,723	712	4,656
$ITh_2 \to ESh_2$	0	0	0	0	0	0	0	0
$ITh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0
$ITh_2 \rightarrow IB-ITh_2$	3,528	4,984	3,791	4,843	520	4,723	712	4,656
$ITh_2 \rightarrow MTh_2$	0	0	0	0	0	0	0	0
$ITh_2 \to SIh_2$	0	0	0	0	0	0	0	0
LT	88	3,020	383	1,780	73	2,549	293	1,346
LTh ₂ → LVh ₂	88	7	383	13	73	15	293	19
$LTh_2 \rightarrow PLh_2 nbc$	0	3,013	0	1,767	0	2,535	1	1,327

APRIL		INFRASTRUCTURE LEVEL										
APRIL		ADVA				PCI/	PMI	MI				
				CLIMA	E YEAR							
	19	95	20	009	19	95	20	009				
				SIMULAT	ION YEAR							
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040				
			Unit: GWI	n/M								
LU	0	0	0	0	0	0	0	0				
$LUh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0				
$LUh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0				
$LUh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0				
LV	127	2,997	425	1,864	105	2,527	314	1,435				
$LVh_2 \rightarrow EEh_2$	79	0	361	0	64	0	273	0				
$LVh_2 \rightarrow LTh_2$	47	2,997	64	1,864	41	2,527	41	1,435				
MT	0	0	0	0	0	0	0	0				
$MTh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0				
NL	346	2,659	709	2,123	602	2,144	1,017	1,749				
$NLh_2 \rightarrow BEh_2$	181	1,827	170	1,296	204	1,710	177	1,349				
$NLh_2 \rightarrow DEh_2$	165	832	539	827	399	434	840	399				
$NLh_2 \rightarrow UKh_2$	0	0	0	0	0	0	0	0				
PL	935	4,786	1,103	3,648	1,414	3,688	1,377	2,779				
$PLh_2N \rightarrow DEh_2$	0	0	0	0	0	0	0	0				
$PLh_2N \rightarrow DKh_2$	0	0	0	0	0	0	0	0				
$PLh_2N \rightarrow Flh_2Al$	0	0	0	0	0	0	0	0				
PLh ₂ N → PLh ₂ S	0	435	0	307	0	0	0	0				
$PLh_2nbc \rightarrow DEh_2$	0	293	0	159	0	905	0	487				
PLh₂nbc → LTh₂	111	0	433	0	89	0	334	0				
$PLh_2nbc \rightarrow PLh_2N$	824	4,058	669	3,182	1,325	2,783	1,043	2,291				
PLh₂nbc → PLh₂S	0	0	0	0	0	0	0	0				
$PLh_2S \rightarrow CZh_2$	0	0	0	0	0	0	0	0				
PLh ₂ S → IB-SKh ₂ E	0	0	0	0	0	0	0	0				
$PLh_2S \rightarrow PLh_2N$	0	0	0	0	0	0	0	0				
PLh ₂ S → PLh ₂ nbc	0	0	0	0	0	0	0	0				
PT	365	0	296	0	377	0	313	0				
$PTh_2 \rightarrow ESh_2$	365	0	296	0	377	0	313	0				
RO	0	0	0	0	0	0	0	0				
$ROh_2 \rightarrow BGh_2$	0	0	0	0	0	0	0	0				
$ROh_2 \rightarrow HUh_2$ $ROh_2 \rightarrow MDh_2$	0	0	0	0	0	0	0	0				
$ROn_2 \rightarrow MDn_2$ $ROh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0				
SEh ₂ \rightarrow DKh ₂	1,597	2,202	1,087	1,224	1,654	2,057	1,173	1,140				
$SEh_2 \rightarrow FIh_2AI$	1,579	2,099	1,075	1,071	1,636	1,976	1,150	1,048				
$SEh_2 \rightarrow Fih_2N$ $SEh_2 \rightarrow Fih_2N$	1,379	103	1,075	153	1,030	81	22	92				
OLII2 - I III2IN	10	103	12	100	10	01	~~	32				

APRIL				INFRASTRUC	TURE LEVEL			
ALKIE		ADVA	NCED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	2	009	19	95	20	009
				SIMULATI	ION YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GWI	1/M				
SI	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0
$Slh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0
$Slh_2 \rightarrow lTh_2$	0	0	0	0	0	0	0	0
SK	743	4,232	620	4,638	0	3,484	0	4,869
$SKh_2E \rightarrow IB-SKh_2C$	0	2,043	0	2,707	0	1,783	0	2,535
$SKh_2E \rightarrow IB-SKh_2E$	0	0	0	0	0	0	0	0
$SKh_2W \rightarrow IB-SKh_2C$	743	1,577	620	1,064	0	121	0	84
SKh₂W → IB-SKh₂W	0	611	0	867	0	1,579	0	2,250
UK	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow IEh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow NLh_2$	0	0	0	0	0	0	0	0
UKh ₂ → UKh ₂ /INT	0	0	0	0	0	0	0	0
$UKh_2/INT \rightarrow BEh_2$	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0

MAY	INFRASTRUCTURE LEVEL									
171/7/1		ADVA	NCED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWI	n/M						
AT	3,136	3,818	2,924	4,700	293	3,321	232	3,850		
$ATh_2 \rightarrow CZh_2$	0	0	0	0	0	0	0	0		
$ATh_2 \rightarrow DEh_2$	2,283	1,579	2,116	1,566	259	2,283	200	2,101		
$ATh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0		
$ATh_2 \rightarrow IB-ITh_2$	0	2	0	0	34	69	32	91		
$ATh_2 \rightarrow IB-SKh_2W$	853	2,236	807	3,134	0	968	0	1,659		
$ATh_2 \rightarrow Slh_2$	0	0	0	0	0	0	0	0		
BE	21	955	6	537	231	917	165	426		
BEh ₂ → BEH ₂ Mo	0	0	0	0	0	0	0	0		
$BEh_2 \rightarrow DEh_2$	21	659	6	304	231	468	165	100		
$BEh_2 \rightarrow FRh_2$	0	171	0	173	0	112	0	133		
$BEh_2 \rightarrow FRh_2N$	0	0	0	0	0	0	0	0		
$BEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0		
$BEh_2 \rightarrow NLh_2$	0	125	0	60	0	336	0	193		
$BEh_2 \rightarrow UKh_2/INT$	0	0	0	0	0	0	0	0		
BEH₂Mo → BEh₂	0	0	0	0	0	0	0	0		
BEH ₂ Mo → FRh ₂ Va	0	0	0	0	0	0	0	0		
BG	115	0	119	0	116	0	119	0		
$BGh_2 \rightarrow GRh_2$	115	0	119	0	116	0	119	0		
$BGh_2 \rightarrow MKh_2$	0	0	0	0	0	0	0	0		
BGh ₂ → ROh ₂	0	0	0	0	0	0	0	0		
СН	0	0	0	0	0	0	0	0		
CHh ₂ → DEh ₂	0	0	0	0	0	0	0	0		
$CHh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
$CHh_2 \rightarrow IB-ITh_2$	0	0	0	0	0	0	0	0		
СУ	0	0	0	0	0	0	0	0		
$CYh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0		
CZ	0	0	0	1	0	503	0	298		
$CZh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0		
$CZh_2 \rightarrow DEh_2$	0	0	0	1	0	503	0	298		
CZh₂ → IB-SKh₂W	0	0	0	0	0	0	0	0		
CZh ₂ → PLh ₂ S	0	0	0	0	0	0	0	0		

MAY		INFRASTRUCTURE LEVEL								
IVIZAT		ADVA	NCED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GW	n/M						
DE	5,093	5,380	5,295	6,216	4,825	4,364	4,965	4,918		
$DEh_2 \rightarrow ATh_2$	8	129	13	84	288	83	318	88		
$DEh_2 \rightarrow BEh_2$	800	415	692	623	652	697	657	919		
$DEh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0		
$DEh_2 \rightarrow CZh_2$	371	965	353	1,484	358	361	321	594		
$DEh_2 \rightarrow DKh_2$	343	473	212	293	255	501	93	300		
$DEh_2 \rightarrow FRh_2$	266	665	483	926	158	583	291	932		
$DEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0		
$DEh_2 \rightarrow NLh_2$	456	484	385	333	337	590	377	459		
$DEh_2 \rightarrow PLh_2N$	590	488	583	571	0	0	0	0		
DEh ₂ → PLh ₂ nbc	927	1,574	1,127	1,808	1,474	1,550	1,526	1,627		
$DEh_2 \rightarrow Y-NOh_2$	0	0	0	0	0	0	0	0		
DEh₂ba → DEh₂	0	0	0	0	0	0	0	0		
$DEh_2bp \rightarrow DEh_2$	60	187	69	94	0	0	0	0		
DEh₂bp → DEh₂ba	0	0	0	0	0	0	0	0		
DEZ1a → DEZ1b	1,272		1,377		1,305		1,382			
DK	727	1,640	953	2,246	797	1,572	966	2,223		
$DKh_2 \rightarrow DEh_2$	727	1,640	953	2,246	797	1,572	966	2,223		
$DKh_2 \rightarrow PLh_2N$	0	0	0	0	0	0	0	0		
$DKh_2 \rightarrow SEh_2$	0	0	0	0	0	0	0	0		
EE	241	2,746	360	3,102	198	1,970	275	2,477		
$EEh_2 \rightarrow FIh_2S$	99	0	242	0	67	0	174	0		
$EEh_2 \rightarrow LVh_2$	143	2,746	117	3,102	131	1,970	101	2,477		
ES	4,472	5,021	3,506	5,152	4,676	5,106	3,479	5,059		
$ESh_2 \rightarrow FRh_2S$	4,422	4,741	3,451	4,873	4,635	4,835	3,420	4,758		
ESh ₂ → FRh ₂ SW	0	0	0	0	0	0	0	0		
$ESh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0		
$ESh_2 \rightarrow PTh_2$	51	280	55	279	41	271	59	301		

MAY				INFRASTRUC	TURE LEVEL			
141/51		ADVAN	NCED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	20	009	19	95	20	009
				SIMULAT	ION YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GWI	h/M				
FI	6,131	14,306	5,634	17,086	6,280	13,782	5,603	17,337
$Flh_2 \rightarrow Flh_2Al$	1,261	2,282	1,245	3,299	1,290	2,502	1,250	3,610
$Flh_2 \rightarrow Flh_2N$	4	1	8	29	0	16	0	32
$Flh_2 \rightarrow Flh_2S$	69	485	52	188	84	200	50	93
Flh ₂ Al → DEh ₂	2,832	4,246	2,376	4,825	2,925	4,484	2,407	5,231
$Flh_2Al \rightarrow Flh_2$	137	812	121	312	157	492	135	182
$FIh_2AI \rightarrow PLh_2N$	0	0	0	0	0	0	0	0
$Flh_2Al \rightarrow SEh_2$	13	0	32	28	0	10	0	42
$Flh_2N \rightarrow Flh_2$	1,053	1,108	1,030	1,342	1,076	1,030	1,053	1,281
$Flh_2N \rightarrow SEh_2$	4	82	30	343	4	183	30	375
Flh ₂ S → EEh ₂	174	2,950	145	3,323	164	2,172	128	2,692
$Flh_2S \rightarrow Flh_2$	583	2,340	593	3,397	581	2,692	551	3,800
$Flh_2S \rightarrow Flh_2SZ1$	0	0	0	0	0	0	0	0
$Flh_2SZ1 \rightarrow Flh_2S$	0	0	0	0	0	0	0	0
FR	8,175	8,818	6,730	8,996	8,685	8,654	6,617	8,630
$FRh_2 \rightarrow BEh_2$	0	496	0	628	0	562	0	686
FRh ₂ → CHh ₂	0	0	0	0	0	0	0	0
$FRh_2 \rightarrow DEh_2$	3,451	2,106	2,709	1,977	3,727	2,031	2,696	1,834
FRh ₂ → FRh ₂ N	0	0	0	0	0	0	0	0
FRh ₂ → FRh ₂ S	116	451	308	662	123	324	275	593
FRh ₂ → FRh ₂ SW	0	0	0	0	0	0	0	0
FRh ₂ → FRh ₂ Va	29	0	12	0	20	0	6	0
FRh ₂ → LUh ₂	0	0	0	0	0	0	0	0
$FRh_2N \rightarrow BEh_2$	0	656	0	292	0	625	0	241
$FRh_2N \rightarrow FRh_2$	0	0	0	0	0	0	0	0
FRh ₂ S → ESh ₂	108	389	272	631	118	292	237	556
$FRh_2S \rightarrow FRh_2$	4,339	4,407	3,297	4,498	4,568	4,506	3,275	4,414
$FRh_2S \rightarrow FRh_2SW$	0	0	0	0	0	0	0	0
$FRh_2SW \rightarrow ESh_2$	0	0	0	0	0	0	0	0
$FRh_2SW \rightarrow FRh_2$	0	0	0	0	0	0	0	0
$FRh_2SW \rightarrow FRh_2S$	0	0	0	0	0	0	0	0
FRh₂Va → BEH₂Mo	106	222	99	218	102	222	95	218
FRh₂Va → FRh₂	26	92	34	90	27	91	34	89
GR	3	430	0	306	3	455	0	324
$GRh_2 \rightarrow BGh_2$	3	430	0	306	3	455	0	324
$GRh_2 \rightarrow CYh_2$	0	0	0	0	0	0	0	0
$GRh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0
2 2								

MAY	INFRASTRUCTURE LEVEL									
		ADVAN	ICED			PCI/I	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	2	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWI	n/M						
HR	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow ALh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow BAh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
ни	561	1,539	506	1,815	0	0	0	0		
$HUh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0		
HUh₂ → HRh₂	0	0	0	0	0	0	0	0		
HUh₂ → IB-SKh₂C	0	0	0	0	0	0	0	0		
$HUh_2 \rightarrow ROh_2$	561	1,539	506	1,815	0	0	0	0		
$HUh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0		
$HUh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
IB	5,241	14,502	4,927	13,823	533	12,686	398	10,05		
$IB-ITh_2 \rightarrow ATh_2$	3,646	5,133	3,426	5,148	499	4,703	365	4,406		
$IB-ITh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0		
$IB-ITh_2 \rightarrow ITh_2$	0	2	0	0	34	69	32	91		
$IB-SKh_2C \rightarrow HUh_2$	690	2,755	642	2,975	0	0	0	0		
$IB-SKh_2C \rightarrow SKh_2E$	52	91	52	149	0	103	0	163		
$IB-SKh_2C \rightarrow SKh_2W$	0	977	0	498	0	2,325	0	1,269		
$IB-SKh_2E \rightarrow PLh_2S$	0	0	0	0	0	0	0	0		
$IB-SKh_2E \rightarrow SKh_2E$	0	2,602	0	1,581	0	2,458	0	1,342		
$IB-SKh_2W \rightarrow ATh_2$	0	0	0	0	0	30	0	27		
$IB-SKh_2W \rightarrow CZh_2$	7	1,376	9	1,032	0	2,688	0	2,266		
$IB\text{-}SKh_2W \rightarrow SKh_2W$	846	1,566	798	2,441	0	311	0	491		
IE	0	0	0	0	0	0	0	0		
$IEh_2 \to UKh_2$	0	0	0	0	0	0	0	0		
IT	3,646	5,133	3,426	5,148	499	4,703	365	4,406		
$ITh_2 \rightarrow ESh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow IB-ITh_2$	3,646	5,133	3,426	5,148	499	4,703	365	4,406		
$ITh_2 \rightarrow MTh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
LT	112	2,414	267	2,745	76	1,647	199	2,125		
$LTh_2 \rightarrow LVh_2$	112	10	267	8	76	23	198	18		
$LTh_2 \rightarrow PLh_2nbc$	0	2,404	0	2,737	0	1,625	0	2,108		

MAY	INFRASTRUCTURE LEVEL								
		ADVA	NCED			PCI/	PMI		
				CLIMAT	E YEAR				
	19	95	20	009	19	95	20	009	
				SIMULAT	ION YEAR				
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040	
			Unit: GWh	n/M					
LU	0	0	0	0	0	0	0	0	
LUh ₂ → BEh ₂	0	0	0	0	0	0	0	0	
$LUh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0	
$LUh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0	
LV	169	2,466	301	2,793	127	1,701	220	2,186	
LVh ₂ → EEh ₂	103	0	249	0	70	0	181	0	
$LVh_2 \rightarrow LTh_2$	66	2,466	52	2,793	57	1,701	39	2,186	
MT	0	0	0	0	0	0	0	0	
$MTh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0	
NL	309	2,386	766	3,290	775	1,901	890	2,627	
$NLh_2 \rightarrow BEh_2$	158	1,487	311	2,400	158	1,429	287	2,219	
$NLh_2 \rightarrow DEh_2$	151	899	455	890	617	472	603	409	
$NLh_2 \rightarrow UKh_2$	0	0	0	0	0	0	0	0	
PL	927	4,399	1,127	4,994	1,474	3,175	1,527	3,734	
PLh ₂ N → DEh ₂	0	0	0	0	0	0	0	0	
$PLh_2N \rightarrow DKh_2$	0	0	0	0	0	0	0	0	
$PLh_2N \rightarrow Flh_2Al$	0	0	0	0	0	0	0	0	
PLh ₂ N → PLh ₂ S	0	421	0	448	0	0	0	0	
PLh₂nbc → DEh₂	0	224	0	316	0	596	0	798	
PLh ₂ nbc → LTh ₂	150	0	313	0	106	0	240	0	
PLh ₂ nbc → PLh ₂ N	777	3,754	815	4,230	1,367	2,579	1,287	2,937	
$PLh_2nbc \rightarrow PLh_2S$	0	0	0	0	0	0	0	0	
$PLh_2S \rightarrow CZh_2$	0	0	0	0	0	0	0	0	
$PLh_2S \rightarrow IB-SKh_2E$	0	0	0	0	0	0	0	0	
$PLh_2S \rightarrow PLh_2N$	0	0	0	0	0	0	0	0	
PLh ₂ S → PLh ₂ nbc	0	0	0	0	0	0	0	0	
PT	373	0	344	0	401	0	337	0	
$PTh_2 \rightarrow ESh_2$	373	0	344	0	401	0	337	0	
RO	0	0	0	0	0	0	0	0	
$ROh_2 \rightarrow BGh_2$	0	0	0	0	0	0	0	0	
$ROh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0	
$ROh_2 \rightarrow MDh_2$	0	0	0	0	0	0	0	0	
$ROh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0	
SE	1,739	3,001	1,299	2,064	1,808	2,622	1,314	1,995	
$SEh_2 \rightarrow DKh_2$	0	0	0	0	0	0	0	0	
$SEh_2 \rightarrow FIh_2AI$	1,721	2,776	1,284	1,867	1,792	2,483	1,292	1,846	
SEh ₂ → FIh ₂ N	18	225	15	197	16	139	22	149	

MAY				INFRASTRUC	TURE LEVEL			
IVIZI		ADVA	NCED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	2	009	19	95	20	009
				SIMULATI	ON YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GWI	n/M				
SI	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0
$Slh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0
$Slh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0
SK	742	4,528	694	3,961	0	4,488	0	2,557
SKh ₂ E → IB-SKh ₂ C	0	2,457	0	1,493	0	2,325	0	1,269
SKh ₂ E → IB-SKh ₂ E	0	0	0	0	0	0	0	0
SKh ₂ W → IB-SKh ₂ C	742	1,366	694	2,129	0	103	0	163
SKh ₂ W → IB-SKh ₂ W	0	706	0	339	0	2,061	0	1,125
UK	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow IEh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow NLh_2$	0	0	0	0	0	0	0	0
UKh ₂ → UKh ₂ /INT	0	0	0	0	0	0	0	0
$UKh_2/INT \rightarrow BEh_2$	0	0	0	0	0	0	0	0
		0	0		0	0	0	0

JUNE		INFRASTRUCTURE LEVEL								
JOINE		ADVA	NCED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWI	ı/M						
AT	2,521	3,801	2,968	4,155	127	3,147	260	3,690		
$ATh_2 \rightarrow CZh_2$	0	0	0	0	0	0	0	0		
$ATh_2 \rightarrow DEh_2$	1,701	1,411	2,282	1,758	82	1,904	243	2,319		
$ATh_2 \to HUh_2$	0	0	0	0	0	0	0	0		
$ATh_2 \rightarrow IB-ITh_2$	0	0	0	9	45	200	17	85		
$ATh_2 \to IB\text{-SKh}_2W$	820	2,390	686	2,388	0	1,044	0	1,285		
$ATh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
BE	22	713	28	596	248	669	290	611		
BEh₂ → BEH₂Mo	0	0	0	0	0	0	0	0		
$BEh_2 \rightarrow DEh_2$	22	547	28	433	248	385	290	178		
$BEh_2 \rightarrow FRh_2$	0	127	0	149	0	90	0	184		
$BEh_2 \rightarrow FRh_2N$	0	0	0	0	0	0	0	0		
$BEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0		
$BEh_2 \rightarrow NLh_2$	0	39	0	14	0	194	0	249		
BEh₂ → UKh₂/INT	0	0	0	0	0	0	0	0		
$BEH_2Mo \rightarrow BEh_2$	0	0	0	0	0	0	0	0		
BEH₂Mo → FRh₂Va	0	0	0	0	0	0	0	0		
BG	111	0	114	0	110	0	113	0		
$BGh_2 \rightarrow GRh_2$	111	0	114	0	110	0	113	0		
$BGh_2 \rightarrow MKh_2$	0	0	0	0	0	0	0	0		
$BGh_2 \rightarrow ROh_2$	0	0	0	0	0	0	0	0		
СН	0	0	0	0	0	0	0	0		
$CHh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0		
$CHh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
$CHh_2 \rightarrow IB-ITh_2$	0	0	0	0	0	0	0	0		
CY	0	0	0	0	0	0	0	0		
$CYh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0		
CZ	0	0	0	3	0	345	0	451		
$CZh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0		
$CZh_2 \rightarrow DEh_2$	0	0	0	3	0	345	0	451		
$CZh_2 \rightarrow IB-SKh_2W$	0	0	0	0	0	0	0	0		
$CZh_2 \rightarrow PLh_2S$	0	0	0	0	0	0	0	0		

JUNE				NFRASTRUC	TURE LEVEL			
JOINE		ADVA	NCED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	20	009	19	95	20	009
				SIMULAT	ION YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GWh	n/M				
DE	5,033	5,608	4,559	6,281	4,717	4,873	3,737	5,627
$DEh_2 \rightarrow ATh_2$	8	57	3	83	399	197	253	84
$DEh_2 \rightarrow BEh_2$	748	532	518	749	609	766	357	1,067
$DEh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0
$DEh_2 \rightarrow CZh_2$	370	1,085	328	957	335	534	273	364
$DEh_2 \rightarrow DKh_2$	304	386	200	307	206	401	72	320
$DEh_2 \rightarrow FRh_2$	506	668	777	985	285	692	568	1,081
$DEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0
$DEh_2 \rightarrow NLh_2$	442	553	254	696	362	705	147	893
$DEh_2 \rightarrow PLh_2N$	571	498	529	489	0	0	0	0
DEh ₂ → PLh ₂ nbc	833	1,686	1,182	1,891	1,268	1,580	1,361	1,818
$DEh_2 \rightarrow Y-NOh_2$	0	0	0	0	0	0	0	0
DEh₂ba → DEh₂	0	0	0	0	0	0	0	0
$DEh_2bp \rightarrow DEh_2$	70	143	103	124	0	0	0	0
DEh₂bp → DEh₂ba	0	0	0	0	0	0	0	0
DEZ1a → DEZ1b	1,181		666		1,252		706	
DK	785	1,610	764	1,909	807	1,567	822	1,864
$DKh_2 \rightarrow DEh_2$	785	1,610	764	1,909	807	1,567	822	1,864
DKh₂ → PLh₂N	0	0	0	0	0	0	0	0
$DKh_2 \rightarrow SEh_2$	0	0	0	0	0	0	0	0
EE	173	2,626	501	2,339	148	1,975	333	1,562
EEh₂ → FIh₂S	17	0	418	0	11	0	260	0
$EEh_2 \rightarrow LVh_2$	156	2,626	83	2,339	138	1,975	73	1,562
ES	3,853	5,182	3,135	4,517	4,047	5,215	3,117	4,667
ESh ₂ → FRh ₂ S	3,794	4,907	3,054	4,254	3,994	4,941	3,045	4,409
ESh ₂ → FRh ₂ SW	0	0	0	0	0	0	0	0
$ESh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0
$ESh_2 \rightarrow PTh_2$	59	276	81	263	53	274	72	258

шыг		INFRASTRUCTURE LEVEL								
JUNE		ADVAN				PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GW	ı/M						
FI	6,134	14,037	4,373	12,052	6,305	13,859	4,422	12,114		
$Flh_2 \rightarrow Flh_2Al$	1,214	2,270	911	1,997	1,265	2,498	908	2,293		
$Flh_2 \rightarrow Flh_2N$	0	5	12	17	0	0	0	20		
$Flh_2 \rightarrow Flh_2S$	95	528	73	282	70	315	77	135		
$Flh_2Al \rightarrow DEh_2$	2,901	4,054	1,758	3,221	3,039	4,504	1,907	3,709		
$Flh_2Al \to Flh_2$	182	915	177	495	149	562	186	299		
$Flh_2Al \rightarrow PLh_2N$	0	0	0	0	0	0	0	0		
$FIh_2AI \to SEh_2$	0	11	62	30	0	19	0	45		
$Flh_2N \rightarrow Flh_2$	1,021	1,000	731	1,039	1,049	1,035	764	1,126		
$Flh_2N \rightarrow SEh_2$	1	118	31	265	1	106	31	295		
$Flh_2S \rightarrow EEh_2$	188	2,827	105	2,535	170	2,178	94	1,757		
$Flh_2S \rightarrow Flh_2$	531	2,308	513	2,171	562	2,643	455	2,435		
$Flh_2S \rightarrow Flh_2SZ1$	0	0	0	0	0	0	0	0		
$Flh_2SZ1 \rightarrow Flh_2S$	0	0	0	0	0	0	0	0		
FR	7,365	8,751	5,928	7,842	7,537	8,881	5,849	8,200		
$FRh_2 \rightarrow BEh_2$	0	523	0	460	0	582	0	540		
FRh ₂ → CHh ₂	0	0	0	0	0	0	0	0		
$FRh_2 \rightarrow DEh_2$	2,940	2,138	2,142	1,817	3,155	2,123	2,184	1,749		
FRh ₂ → FRh ₂ N	0	0	0	0	0	0	0	0		
FRh ₂ → FRh ₂ S	290	438	346	473	195	434	314	619		
FRh ₂ → FRh ₂ SW	0	0	0	0	0	0	0	0		
FRh ₂ → FRh ₂ Va	28	0	40	0	17	0	17	0		
$FRh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0		
$FRh_2N \rightarrow BEh_2$	0	452	0	412	0	437	0	395		
$FRh_2N \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
$FRh_2S \rightarrow ESh_2$	292	416	328	410	189	421	283	547		
$FRh_2S \rightarrow FRh_2$	3,686	4,486	2,958	3,984	3,860	4,586	2,956	4,066		
$FRh_2S \rightarrow FRh_2SW$	0	0	0	0	0	0	0	0		
$FRh_2SW \rightarrow ESh_2$	0	0	0	0	0	0	0	0		
$FRh_2SW \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
$FRh_2SW \rightarrow FRh_2S$	0	0	0	0	0	0	0	0		
FRh₂Va → BEH₂Mo	103	209	96	203	94	209	76	203		
FRh ₂ Va → FRh ₂	25	90	19	82	28	88	19	81		
GR	0	193	0	291	0	195	0	299		
$GRh_2 \rightarrow BGh_2$	0	193	0	291	0	195	0	299		
$GRh_2 \rightarrow CYh_2$	0	0	0	0	0	0	0	0		
$GRh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0		

JUNE	INFRASTRUCTURE LEVEL									
		ADVAN	ICED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	2	009	19	95	20	009		
				SIMULAT	ON YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWI	1/M						
HR	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow ALh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow BAh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
HU	534	1,563	465	1,560	0	0	0	0		
$HUh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0		
HUh ₂ → HRh ₂	0	0	0	0	0	0	0	0		
HUh ₂ → IB-SKh ₂ C	0	0	0	0	0	0	0	0		
$HUh_2 \rightarrow ROh_2$	534	1,563	465	1,560	0	0	0	0		
$HUh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0		
$HUh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
IB	4,545	13,879	4,731	14,105	219	11,334	418	11,86		
$IB-ITh_2 \rightarrow ATh_2$	3,015	4,926	3,467	4,950	175	4,243	401	4,594		
$IB-ITh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0		
$IB-ITh_2 \rightarrow ITh_2$	0	0	0	9	45	200	17	85		
$IB-SKh_2C \rightarrow HUh_2$	661	2,702	528	2,698	0	0	0	0		
$IB-SKh_2C \rightarrow SKh_2E$	49	89	49	92	0	115	0	115		
$IB-SKh_2C \rightarrow SKh_2W$	0	838	0	881	0	1,948	0	1,965		
$IB-SKh_2E \rightarrow PLh_2S$	0	0	0	0	0	0	0	0		
$IB-SKh_2E \rightarrow SKh_2E$	0	2,331	0	2,451	0	2,060	0	2,078		
$IB-SKh_2W \rightarrow ATh_2$	0	0	0	0	0	41	0	35		
IB-SKh ₂ W → CZh ₂	11	1,337	11	1,459	0	2,381	0	2,646		
IB-SKh ₂ W → SKh ₂ W	809	1,656	676	1,566	0	346	0	345		
IE	0	0	0	0	0	0	0	0		
$IEh_2 \to UKh_2$	0	0	0	0	0	0	0	0		
IT	3,015	4,926	3,467	4,950	175	4,243	401	4,594		
$ITh_2 \to ESh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow IB-ITh_2$	3,015	4,926	3,467	4,950	175	4,243	401	4,594		
$ITh_2 \to MTh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
LT	22	2,264	457	2,030	14	1,596	291	1,290		
LTh ₂ → LVh ₂	22	7	457	17	14	20	291	37		
$LTh_2 \rightarrow PLh_2nbc$	0	2,256	0	2,012	0	1,575	0	1,253		

JUNE		INFRASTRUCTURE LEVEL								
		ADVA	NCED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWI	1/M						
LU	0	0	0	0	0	0	0	0		
LUh ₂ → BEh ₂	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
LV	94	2,347	464	2,069	73	1,709	295	1,31		
LVh ₂ → EEh ₂	18	0	429	0	11	0	268	0		
$LVh_2 \rightarrow LTh_2$	76	2,347	34	2,069	62	1,709	26	1,313		
MT	0	0	0	0	0	0	0	0		
$MTh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0		
NL	461	2,395	697	2,061	892	2,070	1,061	1,738		
$NLh_2 \rightarrow BEh_2$	173	1,624	227	1,578	172	1,641	234	1,55		
$NLh_2 \rightarrow DEh_2$	288	771	470	483	720	429	827	181		
$NLh_2 \rightarrow UKh_2$	0	0	0	0	0	0	0	0		
PL	833	4,403	1,182	4,357	1,268	3,155	1,361	3,071		
PLh ₂ N → DEh ₂	0	0	0	0	0	0	0	0		
$PLh_2N \rightarrow DKh_2$	0	0	0	0	0	0	0	0		
$PLh_2N \rightarrow FIh_2AI$	0	0	0	0	0	0	0	0		
$PLh_2N \rightarrow PLh_2S$	0	460	0	453	0	0	0	0		
$PLh_2nbc \rightarrow DEh_2$	0	227	0	169	0	612	0	466		
PLh₂nbc → LTh₂	71	0	515	0	45	0	335	0		
$PLh_2nbc \rightarrow PLh_2N$	762	3,716	667	3,734	1,223	2,543	1,026	2,606		
PLh₂nbc → PLh₂S	0	0	0	0	0	0	0	0		
$PLh_2S \rightarrow CZh_2$	0	0	0	0	0	0	0	0		
PLh ₂ S → IB-SKh ₂ E	0	0	0	0	0	0	0	0		
$PLh_2S \rightarrow PLh_2N$ $PLh_2S \rightarrow PLh_2nbc$	0	0	0	0	0	0	0	0		
PTh ₂ \rightarrow ESh ₂	309 309	0	267 267	0	310 310	0	254 254	0		
RO POh RCh	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow BGh_2$ $ROh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0		
$ROn_2 \rightarrow HOn_2$ $ROh_2 \rightarrow MDh_2$	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0		
SE	1,887	2,945	1,110	2,076	1,940	2,794	1,212	1,942		
SEh ₂ \rightarrow DKh ₂	0	2,945	0	0	1,940	0	0	0		
$SEh_2 \rightarrow FIh_2AI$	1,869	2,710	1,087	1,749	1,923	2,587	1,184	1,760		
$SEh_2 \rightarrow FIh_2N$ $SEh_2 \rightarrow FIh_2N$	1,803	235	23	327	1,323	207	28	182		
OLII2 7 I III2I4	10	233	23	321	"	207	20	102		

JUNE				INFRASTRUC	TURE LEVEL			
JOINE		ADVAI	NCED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	2	009	19	95	20	009
				SIMULATI	ON YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GWI	n/M				
SI	0	0	0	0	0	0	0	0
$Slh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0
SK	710	4,232	577	4,307	0	3,788	0	3,821
SKh ₂ E → IB-SKh ₂ C	0	2,193	0	2,315	0	1,948	0	1,965
$SKh_2E \rightarrow IB-SKh_2E$	0	0	0	0	0	0	0	0
$SKh_2W \rightarrow IB-SKh_2C$	710	1,436	577	1,356	0	115	0	115
SKh₂W → IB-SKh₂W	0	603	0	636	0	1,724	0	1,741
UK	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow IEh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow NLh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow UKh_2/INT$	0	0	0	0	0	0	0	0
$UKh_2/INT \rightarrow BEh_2$	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

JULY		INFRASTRUCTURE LEVEL								
JOE1		ADVA	NCED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWI	ı/M						
AT	2,608	3,297	2,714	4,231	115	2,621	106	3,607		
$ATh_2 \rightarrow CZh_2$	0	0	0	0	0	0	0	0		
$ATh_2 \rightarrow DEh_2$	1,918	1,059	2,043	1,601	49	1,786	81	2,228		
$ATh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0		
$ATh_2 \rightarrow IB-ITh_2$	0	0	0	0	66	179	25	118		
$ATh_2 \rightarrow IB-SKh_2W$	689	2,239	671	2,630	0	656	0	1,261		
$ATh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
BE	51	743	8	590	385	661	229	590		
BEh ₂ → BEH ₂ Mo	0	0	0	0	0	0	0	0		
$BEh_2 \rightarrow DEh_2$	51	538	8	405	385	293	229	311		
$BEh_2 \rightarrow FRh_2$	0	195	0	182	0	193	0	204		
$BEh_2 \rightarrow FRh_2N$	0	0	0	0	0	0	0	0		
$BEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0		
$BEh_2 \rightarrow NLh_2$	0	9	0	3	0	176	0	74		
$BEh_2 \rightarrow UKh_2/INT$	0	0	0	0	0	0	0	0		
BEH₂Mo → BEh₂	0	0	0	0	0	0	0	0		
BEH₂Mo → FRh₂Va	0	0	0	0	0	0	0	0		
BG	113	0	116	0	113	0	116	0		
$BGh_2 \rightarrow GRh_2$	113	0	116	0	113	0	116	0		
$BGh_2 \rightarrow MKh_2$	0	0	0	0	0	0	0	0		
$BGh_2 \rightarrow ROh_2$	0	0	0	0	0	0	0	0		
СН	0	0	0	0	0	0	0	0		
CHh ₂ → DEh ₂	0	0	0	0	0	0	0	0		
CHh₂ → FRh₂	0	0	0	0	0	0	0	0		
CHh ₂ → IB-ITh ₂	0	0	0	0	0	0	0	0		
CY	0	0	0	0	0	0	0	0		
$CYh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0		
CZ	0	0	0	3	0	546	0	441		
$CZh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0		
$CZh_2 \rightarrow DEh_2$	0	0	0	3	0	546	0	441		
$CZh_2 \rightarrow IB-SKh_2W$	0	0	0	0	0	0	0	0		
	0	0	0	0	0	0	0	0		

JULY			1	NFRASTRUC	TURE LEVEL			
JOLI		ADVA	NCED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	20	009	19	95	20	009
				SIMULAT	ION YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GWI	ı/M				
DE	4,646	6,370	4,576	6,916	3,642	5,968	4,045	5,888
$DEh_2 \rightarrow ATh_2$	15	200	7	102	336	241	352	122
$DEh_2 \rightarrow BEh_2$	483	744	436	702	456	1,116	393	893
$DEh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0
$DEh_2 \rightarrow CZh_2$	326	906	327	1,189	221	646	290	537
$DEh_2 \rightarrow DKh_2$	397	485	193	399	119	467	56	390
$DEh_2 \rightarrow FRh_2$	817	824	660	1,107	311	1,047	410	1,148
$DEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0
$DEh_2 \rightarrow NLh_2$	233	1,074	148	569	265	1,210	115	717
$DEh_2 \rightarrow PLh_2N$	570	509	560	524	0	0	0	0
$DEh_2 \rightarrow PLh_2nbc$	768	1,475	1,489	2,213	984	1,241	1,694	2,081
$DEh_2 \rightarrow Y-NOh_2$	0	0	0	0	0	0	0	0
DEh₂ba → DEh₂	0	0	0	0	0	0	0	0
$DEh_2bp \rightarrow DEh_2$	178	153	99	111	0	0	0	0
DEh₂bp → DEh₂ba	0	0	0	0	0	0	0	0
DEZ1a → DEZ1b	858		658		951		734	
DK	661	1,598	750	1,730	693	1,578	782	1,706
$DKh_2 \rightarrow DEh_2$	661	1,598	750	1,730	693	1,578	782	1,706
$DKh_2 \rightarrow PLh_2N$	0	0	0	0	0	0	0	0
$DKh_2 \rightarrow SEh_2$	0	0	0	0	0	0	0	0
EE	252	3,060	667	2,011	181	2,603	452	1,202
$EEh_2 \rightarrow FIh_2S$	111	0	597	0	85	0	398	0
$EEh_2 \rightarrow LVh_2$	141	3,060	70	2,011	97	2,603	54	1,202
ES	2,941	4,695	3,211	4,360	2,933	4,673	3,211	4,313
$ESh_2 \rightarrow FRh_2S$	2,847	4,397	3,124	4,094	2,852	4,384	3,147	4,043
$ESh_2 \rightarrow FRh_2SW$	0	0	0	0	0	0	0	0
$ESh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0
$ESh_2 \rightarrow PTh_2$	95	299	87	266	80	289	64	271

JULY		INFRASTRUCTURE LEVEL								
JOLI		ADVAN	NCED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWI	1/M						
FI	6,328	17,465	3,169	10,428	6,232	17,683	2,965	9,888		
$Flh_2 \rightarrow Flh_2Al$	1,391	3,392	582	1,332	1,385	3,584	522	1,536		
$Flh_2 \rightarrow Flh_2N$	3	0	20	5	0	15	0	2		
$Flh_2 \rightarrow Flh_2S$	50	138	124	745	64	47	122	431		
Flh ₂ Al → DEh ₂	2,807	5,315	1,087	2,423	2,762	5,758	1,140	2,866		
$Flh_2Al \rightarrow Flh_2$	123	314	243	1,150	147	166	279	828		
$Flh_2Al \rightarrow PLh_2N$	0	0	0	0	0	0	0	0		
$Flh_2Al \rightarrow SEh_2$	13	33	83	8	0	29	0	15		
$Flh_2N \rightarrow Flh_2$	1,173	1,189	431	839	1,145	1,406	448	810		
$Flh_2N \rightarrow SEh_2$	12	263	38	201	12	271	44	253		
$Flh_2S \rightarrow EEh_2$	171	3,282	87	2,208	124	2,822	71	1,399		
$Flh_2S \rightarrow Flh_2$	585	3,539	474	1,517	593	3,584	340	1,748		
$Flh_2S \rightarrow Flh_2SZ1$	0	0	0	0	0	0	0	0		
$Flh_2SZ1 \rightarrow Flh_2S$	0	0	0	0	0	0	0	0		
FR	5,224	8,070	6,382	7,850	5,135	8,162	6,336	7,781		
$FRh_2 \rightarrow BEh_2$	0	511	0	563	0	612	0	588		
FRh ₂ → CHh ₂	0	0	0	0	0	0	0	0		
$FRh_2 \rightarrow DEh_2$	1,984	1,797	2,452	1,555	2,018	1,755	2,519	1,517		
FRh ₂ → FRh ₂ N	0	0	0	0	0	0	0	0		
FRh ₂ → FRh ₂ S	128	481	378	698	87	554	328	676		
FRh ₂ → FRh ₂ SW	0	0	0	0	0	0	0	0		
FRh ₂ → FRh ₂ Va	46	0	19	0	13	0	9	0		
$FRh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0		
$FRh_2N \rightarrow BEh_2$	0	503	0	360	0	412	0	361		
$FRh_2N \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
$FRh_2S \rightarrow ESh_2$	143	439	375	642	85	504	299	612		
$FRh_2S \rightarrow FRh_2$	2,812	4,035	3,033	3,742	2,851	4,023	3,067	3,735		
FRh₂S → FRh₂SW	0	0	0	0	0	0	0	0		
$FRh_2SW \rightarrow ESh_2$	0	0	0	0	0	0	0	0		
$FRh_2SW \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
$FRh_2SW \rightarrow FRh_2S$	0	0	0	0	0	0	0	0		
FRh ₂ Va → BEH ₂ Mo	95	211	95	202	65	210	86	203		
FRh₂Va → FRh₂	15	93	29	89	16	92	29	89		
GR	0	333	0	348	0	334	0	362		
$GRh_2 \rightarrow BGh_2$	0	333	0	348	0	334	0	362		
$GRh_2 \rightarrow CYh_2$	0	0	0	0	0	0	0	0		
$GRh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0		
2										

JULY				INFRASTRUC	TURE LEVEL			
702 1		ADVA	NCED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	20	009	19	95	20	009
				SIMULAT	ION YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GWI	n/M				
HR	0	0	0	0	0	0	0	0
$HRh_2 \rightarrow ALh_2$	0	0	0	0	0	0	0	0
$HRh_2 \rightarrow BAh_2$	0	0	0	0	0	0	0	0
$HRh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0
$HRh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0
$HRh_2 \to SIh_2$	0	0	0	0	0	0	0	0
HU	477	1,547	479	1,655	0	0	0	0
$HUh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0
$HUh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0
HUh₂ → IB-SKh₂C	0	0	0	0	0	0	0	0
$HUh_2 \rightarrow ROh_2$	477	1,547	479	1,655	0	0	0	0
$HUh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0
$HUh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0

JULY		INFRASTRUCTURE LEVEL								
JULI		ADVAN	ICED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWI	1/M						
IB	4,382	14,745	4,465	14,032	166	12,403	179	11,020		
$IB-ITh_2 \rightarrow ATh_2$	3,114	5,102	3,224	5,118	100	4,425	154	4,592		
$IB\text{-}ITh_2 \to CHh_2$	0	0	0	0	0	0	0	0		
$IB-ITh_2 \rightarrow ITh_2$	0	0	0	0	66	179	25	118		
$IB\text{-}SKh_2C \rightarrow HUh_2$	532	2,783	524	2,858	0	0	0	0		
$IB\text{-}SKh_2C \rightarrow SKh_2E$	47	84	46	115	0	96	0	134		
$IB-SKh_2C \rightarrow SKh_2W$	0	1,011	0	731	0	2,393	0	1,670		
$IB-SKh_2E \rightarrow PLh_2S$	0	0	0	0	0	0	0	0		
$IB-SKh_2E \rightarrow SKh_2E$	0	2,801	0	2,055	0	2,526	0	1,765		
$IB-SKh_2W \rightarrow ATh_2$	0	0	0	0	0	17	0	9		
IB-SKh ₂ W → CZh ₂	17	1,571	8	1,141	0	2,479	0	2,330		
IB-SKh₂W → SKh₂W	672	1,393	663	2,015	0	289	0	402		
IE	0	0	0	0	0	0	0	0		
$IEh_2 \rightarrow UKh_2$	0	0	0	0	0	0	0	0		
IT	3,114	5,102	3,224	5,118	100	4,425	154	4,592		
$ITh_2 \to ESh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow IB-ITh_2$	3,114	5,102	3,224	5,118	100	4,425	154	4,592		
$ITh_2 \to MTh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
LT	123	2,745	651	1,693	99	2,297	447	891		
$LTh_2 \rightarrow LVh_2$	123	10	651	13	98	22	447	45		
LTh ₂ → PLh ₂ nbc	0	2,735	0	1,680	1	2,275	1	846		
LU	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
LV	184	2,754	643	1,749	125	2,309	433	974		
$LVh_2 \rightarrow EEh_2$	114	0	613	0	88	0	412	0		
$LVh_2 \rightarrow LTh_2$	70	2,754	30	1,749	37	2,309	21	974		
МТ	0	0	0	0	0	0	0	0		
$MTh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0		
NL	861	2,415	862	2,964	1,218	1,841	1,035	2,503		
$NLh_2 \rightarrow BEh_2$	160	1,475	278	1,963	140	1,408	265	1,886		
$NLh_2 \rightarrow DEh_2$	700	940	585	1,001	1,078	433	770	617		
$NLh_2 \rightarrow UKh_2$	0	0	0	0	0	0	0	0		

JULY		INFRASTRUCTURE LEVEL								
JOLI		ADVAI	NCED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	2	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWI	1/M						
PL	768	4,751	1,489	4,417	985	3,516	1,694	2,927		
$PLh_2N \rightarrow DEh_2$	0	0	0	0	0	0	0	0		
$PLh_2N \rightarrow DKh_2$	0	0	0	0	0	0	0	0		
$PLh_2N \rightarrow Flh_2Al$	0	0	0	0	0	0	0	0		
$PLh_2N \rightarrow PLh_2S$	0	541	0	523	0	0	0	0		
$PLh_2nbc \rightarrow DEh_2$	0	262	0	111	0	805	0	285		
PLh₂nbc → LTh₂	146	0	754	0	116	0	529	0		
$PLh_2nbc \rightarrow PLh_2N$	622	3,948	735	3,782	869	2,711	1,165	2,642		
PLh₂nbc → PLh₂S	0	0	0	0	0	0	0	0		
PLh ₂ S → CZh ₂	0	0	0	0	0	0	0	0		
PLh ₂ S → IB-SKh ₂ E	0	0	0	0	0	0	0	0		
$PLh_2S \rightarrow PLh_2N$	0	0	0	0	0	0	0	0		
$PLh_2S \rightarrow PLh_2nbc$	0	0	0	0	0	0	0	0		
РТ	223	0	263	0	216	0	282	0		
$PTh_2 \rightarrow ESh_2$	223	0	263	0	216	0	282	0		
RO	0	0	0	0	0	0	0	0		
ROh₂ → BGh₂	0	0	0	0	0	0	0	0		
ROh ₂ → HUh ₂	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow MDh_2$	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0		
SE	1,566	2,346	857	2,605	1,541	2,413	934	2,392		
$SEh_2 \rightarrow DKh_2$	0	0	0	0	0	0	0	0		
$SEh_2 \rightarrow FIh_2AI$	1,552	2,269	831	2,250	1,524	2,369	897	2,173		
$SEh_2 \rightarrow FIh_2N$	14	77	26	354	17	44	37	219		
SI	0	0	0	0	0	0	0	0		
$Slh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0		
$Slh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0		
SIh₂ → HUh₂	0	0	0	0	0	0	0	0		
$SIh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0		
SK	579	4,603	570	4,229	0	4,617	0	3,285		
SKh₂E → IB-SKh₂C	0	2,657	0	1,941	0	2,393	0	1,670		
SKh₂E → IB-SKh₂E	0	0	0	0	0	0	0	0		
$SKh_2W \rightarrow IB-SKh_2C$	579	1,222	570	1,762	0	96	0	134		
$SKh_2W \rightarrow IB-SKh_2W$	0	725	0	526	0	2,128	0	1,481		

JULY			1	NFRASTRUC	TURE LEVEL								
JOLI		ADVAN	NCED			PCI/	PMI						
				CLIMAT	E YEAR								
	19	95	20	009	19	95	20	009					
				SIMULAT	ION YEAR								
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040					
			Unit: GWh	n/M									
UK	0	0	0	0	0	0	0	0					
$UKh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0					
$UKh_2 \rightarrow IEh_2$	0	0	0	0	0	0	0	0					
$UKh_2 \rightarrow NLh_2$	0	0	0	0	0	0	0	0					
$UKh_2 \rightarrow UKh_2/INT$	0	0	0	0	0	0	0	0					
$UKh_2/INT \rightarrow BEh_2$	0	0	0	0	0	0	0	0					
UKh ₂ /INT → UKh ₂	0	0	0	0	0	0	0	0					

AUGUST				INFRASTRUC	TURE LEVEL			
A00031		ADVAN	ICED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	20	009	19	95	20	009
				SIMULAT	ION YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GW	n/M				
AT	2,541	3,531	2,782	3,445	161	2,765	143	2,928
$ATh_2 \rightarrow CZh_2$	0	0	0	0	0	0	0	0
$ATh_2 \rightarrow DEh_2$	1,785	1,135	2,132	1,126	69	1,897	94	2,159
$ATh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0
$ATh_2 \rightarrow IB-ITh_2$	1	0	0	0	92	240	48	95
ATh ₂ → IB-SKh ₂ W	755	2,396	651	2,319	0	628	0	673
$ATh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0
BE	28	918	21	832	328	885	374	763
BEh₂ → BEH₂Mo	0	0	0	0	0	0	0	0
$BEh_2 \rightarrow DEh_2$	28	739	21	565	328	501	374	384
$BEh_2 \rightarrow FRh_2$	0	153	0	238	0	113	0	177
$BEh_2 \rightarrow FRh_2N$	0	0	0	0	0	0	0	0
$BEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0
$BEh_2 \rightarrow NLh_2$	0	27	0	29	0	271	0	202
$BEh_2 \rightarrow UKh_2/INT$	0	0	0	0	0	0	0	0
$BEH_2Mo \rightarrow BEh_2$	0	0	0	0	0	0	0	0
BEH₂Mo → FRh₂Va	0	0	0	0	0	0	0	0
BG	119	0	117	0	117	0	116	0
$BGh_2 \rightarrow GRh_2$	119	0	117	0	117	0	116	0
$BGh_2 \rightarrow MKh_2$	0	0	0	0	0	0	0	0
$BGh_2 \rightarrow ROh_2$	0	0	0	0	0	0	0	0
СН	0	0	0	0	0	0	0	0
$CHh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0
$CHh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0
$CHh_2 \rightarrow IB-ITh_2$	0	0	0	0	0	0	0	0
CY	0	0	0	0	0	0	0	0
$CYh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0
CZ	0	3	0	3	0	519	0	635
$CZh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0
$CZh_2 \rightarrow DEh_2$	0	3	0	3	0	519	0	635
$CZh_2 \rightarrow IB-SKh_2W$	0	0	0	0	0	0	0	0
$CZh_2 \rightarrow PLh_2S$	0	0	0	0	0	0	0	0

AUGUST				INFRASTRUC	TURE LEVEL			
AUGUST		ADVAI	NCED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	20	009	19	95	20	009
				SIMULAT	ION YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GWI	ı/M				
DE	4,988	5,284	4,379	6,457	4,238	4,740	3,543	5,880
$DEh_2 \rightarrow ATh_2$	42	187	2	148	357	318	317	207
$DEh_2 \rightarrow BEh_2$	622	500	380	581	600	644	358	832
$DEh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0
$DEh_2 \rightarrow CZh_2$	292	1,032	308	866	225	798	232	541
$DEh_2 \rightarrow DKh_2$	442	549	294	443	166	556	74	427
$DEh_2 \rightarrow FRh_2$	575	298	836	984	194	501	381	1,049
$DEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0
$DEh_2 \rightarrow NLh_2$	353	438	146	746	362	500	148	922
$DEh_2 \rightarrow PLh_2N$	570	503	551	513	0	0	0	0
$DEh_2 \rightarrow PLh_2nbc$	868	1,602	1,083	2,022	1,071	1,422	1,268	1,902
$DEh_2 \rightarrow Y-NOh_2$	0	0	0	0	0	0	0	0
$DEh_2ba \rightarrow DEh_2$	0	0	0	0	0	0	0	0
$DEh_2bp \rightarrow DEh_2$	156	176	162	154	0	0	0	0
DEh₂bp → DEh₂ba	0	0	0	0	0	0	0	0
DEZ1a → DEZ1b	1,069		617		1,264		766	
DK	597	1,758	702	1,739	630	1,745	746	1,718
$DKh_2 \rightarrow DEh_2$	597	1,758	702	1,739	630	1,745	746	1,718
$DKh_2 \rightarrow PLh_2N$	0	0	0	0	0	0	0	0
$DKh_2 \rightarrow SEh_2$	0	0	0	0	0	0	0	0
EE	275	2,927	455	2,181	173	2,385	296	1,513
$EEh_2 \rightarrow FIh_2S$	130	0	366	0	66	0	233	0
$EEh_2 \to LVh_2$	145	2,927	89	2,181	107	2,385	63	1,513
ES	3,364	5,245	2,700	4,375	3,356	5,165	2,758	4,366
$ESh_2 \rightarrow FRh_2S$	3,295	4,968	2,595	4,100	3,296	4,884	2,675	4,074
$ESh_2 \rightarrow FRh_2SW$	0	0	0	0	0	0	0	0
$ESh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0
$ESh_2 \rightarrow PTh_2$	68	277	104	276	61	281	82	292

AUGUST				INFRASTRUC	TURE LEVEL								
AUGUST		ADVAN	ICED			PCI/	PMI						
				CLIMAT	E YEAR								
	19	95	2	009	19	95	20	009					
				SIMULAT	ION YEAR								
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040					
			Unit: GWI	n/M									
FI	6,132	17,165	4,130	11,617	6,377	17,374	4,108	11,289					
$Flh_2 \rightarrow Flh_2Al$	1,359	3,501	814	1,772	1,417	3,806	822	2,005					
$Flh_2 \rightarrow Flh_2N$	3	6	12	10	0	12	0	9					
$Flh_2 \rightarrow Flh_2S$	106	265	99	510	111	153	91	296					
$Flh_2Al \rightarrow DEh_2$	2,567	4,762	1,717	3,028	2,746	5,104	1,793	3,322					
$Flh_2Al \rightarrow Flh_2$	208	507	203	992	218	378	223	657					
$Flh_2Al \rightarrow PLh_2N$	0	0	0	0	0	0	0	0					
$Flh_2Al \rightarrow SEh_2$	14	24	48	12	0	22	0	12					
$Flh_2N \rightarrow Flh_2$	1,154	1,243	643	898	1,187	1,296	668	993					
$Flh_2N \rightarrow SEh_2$	2	257	5	174	0	273	3	223					
$Flh_2S \rightarrow EEh_2$	173	3,132	110	2,367	135	2,589	83	1,693					
$Flh_2S \rightarrow Flh_2$	546	3,467	480	1,856	562	3,742	425	2,080					
$Flh_2S \rightarrow Flh_2SZ1$	0	0	0	0	0	0	0	0					
$Flh_2SZ1 \rightarrow Flh_2S$	0	0	0	0	0	0	0	0					
FR	5,870	8,547	5,135	8,040	5,904	8,634	5,162	7,940					
$FRh_2 \rightarrow BEh_2$	0	499	0	485	0	560	0	527					
$FRh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0					
$FRh_2 \rightarrow DEh_2$	2,263	2,229	1,834	1,631	2,362	2,058	1,942	1,617					
$FRh_2 \rightarrow FRh_2N$	0	0	0	0	0	0	0	0					
FRh₂ → FRh₂S	100	130	310	643	68	270	226	599					
FRh₂ → FRh₂SW	0	0	0	0	0	0	0	0					
FRh ₂ → FRh ₂ Va	44	0	34	0	12	0	8	0					
$FRh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0					
$FRh_2N \rightarrow BEh_2$	0	620	0	522	0	616	0	468					
$FRh_2N \rightarrow FRh_2$	0	0	0	0	0	0	0	0					
$FRh_2S \rightarrow ESh_2$	106	112	312	628	69	250	224	570					
$FRh_2S \rightarrow FRh_2$	3,240	4,649	2,535	3,837	3,302	4,575	2,673	3,863					
$FRh_2S \rightarrow FRh_2SW$	0	0	0	0	0	0	0	0					
$FRh_2SW \rightarrow ESh_2$	0	0	0	0	0	0	0	0					
$FRh_2SW \rightarrow FRh_2$	0	0	0	0	0	0	0	0					
$FRh_2SW \rightarrow FRh_2S$	0	0	0	0	0	0	0	0					
FRh₂Va → BEH₂Mo	98	212	92	203	71	212	68	208					
FRh ₂ Va → FRh ₂	19	96	19	90	20	92	20	88					

AUGUST		INFRASTRUCTURE LEVEL								
A00031		ADVAN	ICED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWI	ı/M						
GR	0	302	0	314	0	285	0	325		
$GRh_2 \rightarrow BGh_2$	0	302	0	314	0	285	0	325		
$GRh_2 \rightarrow CYh_2$	0	0	0	0	0	0	0	0		
$GRh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0		
HR	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow ALh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \to BAh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \to HUh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \to RSh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
HU	481	1,546	462	1,576	0	0	0	0		
$HUh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0		
$HUh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0		
$HUh_2 \rightarrow IB\text{-}SKh_2C$	0	0	0	0	0	0	0	0		
$HUh_2 \rightarrow ROh_2$	481	1,546	462	1,576	0	0	0	0		
$HUh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0		
$HUh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
IB	4,396	14,406	4,495	14,699	229	11,928	221	12,875		
$\text{IB-ITh}_2 \rightarrow \text{ATh}_2$	3,019	5,039	3,300	5,099	137	4,242	172	4,641		
$IB-ITh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0		
$\text{IB-ITh}_2 \rightarrow \text{ITh}_2$	1	0	0	0	92	240	48	95		
IB-SKh ₂ C → HUh ₂	574	2,756	498	2,840	0	0	0	0		
$IB-SKh_2C \rightarrow SKh_2E$	47	92	47	86	0	103	0	91		
IB-SKh ₂ C → SKh ₂ W	0	947	0	937	0	2,280	0	2,504		
$IB-SKh_2E \rightarrow PLh_2S$	0	0	0	0	0	0	0	0		
IB-SKh ₂ E → SKh ₂ E	0	2,478	0	2,760	0	2,406	0	2,641		
$IB\text{-}SKh_2W \rightarrow ATh_2$	0	0	0	0	0	38	0	11		
$IB-SKh_2W \rightarrow CZh_2$	41	1,433	13	1,553	0	2,311	0	2,618		
IB-SKh ₂ W → SKh ₂ W	715	1,661	638	1,424	0	309	0	274		
IE	0	0	0	0	0	0	0	0		
$IEh_2 \rightarrow UKh_2$	0	0	0	0	0	0	0	0		
IΤ	3,019	5,039	3,300	5,099	137	4,242	172	4,641		
$ITh_2 \rightarrow ESh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow IB-ITh_2$	3,019	5,039	3,300	5,099	137	4,242	172	4,641		
$ITh_2 \rightarrow MTh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		

AUGUST		INFRASTRUCTURE LEVEL								
AUGU31		ADVAI				PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GW	n/M						
LT	145	2,456	399	1,921	76	1,919	263	1,274		
$LTh_2 \rightarrow LVh_2$	145	8	399	25	76	19	263	41		
$LTh_2 \rightarrow PLh_2nbc$	0	2,448	0	1,896	0	1,900	0	1,233		
LU	0	0	0	0	0	0	0	0		
LUh ₂ → BEh ₂	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
LV	211	2,640	413	1,939	111	2,111	264	1,291		
$LVh_2 \rightarrow EEh_2$	134	0	376	0	69	0	241	0		
$LVh_2 \rightarrow LTh_2$	77	2,640	37	1,939	42	2,111	22	1,291		
MT	0	0	0	0	0	0	0	0		
$MTh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0		
NL	817	2,403	1,030	2,589	1,058	1,882	1,363	2,032		
$NLh_2 \rightarrow BEh_2$	130	1,488	202	1,630	136	1,419	173	1,509		
$NLh_2 \rightarrow DEh_2$	686	915	828	959	922	464	1,190	523		
$NLh_2 \rightarrow UKh_2$	0	0	0	0	0	0	0	0		
PL	868	4,546	1,083	4,388	1,071	3,323	1,268	3,135		
$PLh_2N \rightarrow DEh_2$	0	0	0	0	0	0	0	0		
$PLh_2N \rightarrow DKh_2$	0	0	0	0	0	0	0	0		
$PLh_2N \rightarrow FIh_2AI$	0	0	0	0	0	0	0	0		
$PLh_2N \rightarrow PLh_2S$	0	496	0	470	0	0	0	0		
$PLh_2nbc \rightarrow DEh_2$	0	217	0	194	0	653	0	478		
PLh₂nbc → LTh₂	190	0	476	0	109	0	321	0		
$PLh_2nbc \rightarrow PLh_2N$	678	3,833	607	3,724	962	2,670	947	2,657		
PLh₂nbc → PLh₂S	0	0	0	0	0	0	0	0		
$PLh_2S \rightarrow CZh_2$	0	0	0	0	0	0	0	0		
$PLh_2S \rightarrow IB-SKh_2E$	0	0	0	0	0	0	0	0		
$PLh_2S \rightarrow PLh_2N$ $PLh_2S \rightarrow PLh_2nbc$	0	0	0	0	0	0	0	0		
PT . ECh	282	0	202	0	289	0	217	0		
$PTh_2 \rightarrow ESh_2$	282	0	202	0	289	0	217	0		
RO	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow BGh_2$	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow MDh_2$	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0		

AUGUST				NFRASTRUC	TURE LEVEL			
7,0000		ADVAI	NCED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	20	009	19	95	20	009
				SIMULAT	ON YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GWI	ı/M				
SE	1,449	1,900	1,174	2,473	1,567	1,762	1,226	2,164
$SEh_2 \rightarrow DKh_2$	0	0	0	0	0	0	0	0
$SEh_2 \rightarrow FIh_2AI$	1,429	1,792	1,153	2,260	1,547	1,698	1,194	1,986
$SEh_2 \rightarrow FIh_2N$	20	108	21	214	20	64	32	178
SI	0	0	0	0	0	0	0	0
$Slh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0
$Slh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0
$Slh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0
SK	621	4,493	544	4,521	0	4,412	0	4,825
$SKh_2E \rightarrow IB-SKh_2C$	0	2,342	0	2,617	0	2,280	0	2,504
$SKh_2E \rightarrow IB-SKh_2E$	0	0	0	0	0	0	0	0
$SKh_2W \rightarrow IB-SKh_2C$	621	1,453	544	1,247	0	103	0	91
SKh₂W → IB-SKh₂W	0	698	0	658	0	2,029	0	2,230
UK	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow IEh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow NLh_2$	0	0	0	0	0	0	0	0
UKh ₂ → UKh ₂ /INT	0	0	0	0	0	0	0	0
$UKh_2/INT \rightarrow BEh_2$	0	0	0	0	0	0	0	0
UKh ₂ /INT → UKh ₂	0	0	0	0	0	0	0	0

SEPTEMBER				NFRASTRUC	TURE LEVEL			
JEP I LIVIDER		ADVAN	ICED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	20	009	19	95	20	009
				SIMULAT	ION YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GWI	n/M				
AT	2,741	3,364	2,560	3,022	209	2,923	195	2,462
$ATh_2 \rightarrow CZh_2$	0	0	0	0	0	0	0	0
$ATh_2 \rightarrow DEh_2$	2,003	1,187	1,850	792	178	1,927	76	1,585
$ATh_2 \to HUh_2$	0	0	0	0	0	0	0	0
$ATh_2 \rightarrow IB-ITh_2$	0	0	0	0	30	16	119	204
$ATh_2 \rightarrow IB\text{-}SKh_2W$	738	2,177	709	2,229	0	980	0	674
$ATh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0
BE	23	776	26	565	267	750	259	508
BEh₂ → BEH₂Mo	0	0	0	0	0	0	0	0
$BEh_2 \rightarrow DEh_2$	23	661	26	433	267	496	259	248
$BEh_2 \rightarrow FRh_2$	0	115	0	101	0	132	0	100
$BEh_2 \rightarrow FRh_2N$	0	0	0	0	0	0	0	0
$BEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0
$BEh_2 \rightarrow NLh_2$	0	0	0	31	0	122	0	160
$BEh_2 \rightarrow UKh_2/INT$	0	0	0	0	0	0	0	0
$BEH_2Mo \rightarrow BEh_2$	0	0	0	0	0	0	0	0
BEH₂Mo → FRh₂Va	0	0	0	0	0	0	0	0
BG	117	0	113	0	116	0	113	0
$BGh_2 \rightarrow GRh_2$	117	0	113	0	116	0	113	0
$BGh_2 \rightarrow MKh_2$	0	0	0	0	0	0	0	0
$BGh_2 \rightarrow ROh_2$	0	0	0	0	0	0	0	0
СН	0	0	0	0	0	0	0	0
$CHh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0
$CHh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0
$CHh_2 \rightarrow IB-ITh_2$	0	0	0	0	0	0	0	0
СУ	0	0	0	0	0	0	0	0
$CYh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0
CZ	0	3	0	0	0	496	0	432
$CZh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0
$CZh_2 \rightarrow DEh_2$	0	3	0	0	0	496	0	432
$CZh_2 \rightarrow IB-SKh_2W$	0	0	0	0	0	0	0	0
$CZh_2 \rightarrow PLh_2S$	0	0	0	0	0	0	0	0

SEPTEMBER		INFRASTRUCTURE LEVEL							
SEI TEMBER		ADVA	NCED			PCI/	PMI		
				CLIMAT	E YEAR				
	19	95	2	009	19	95	20	009	
				SIMULAT	ION YEAR				
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040	
			Unit: GWI	h/M					
DE	4,758	6,045	4,530	4,944	4,261	4,985	4,063	4,716	
$DEh_2 \rightarrow ATh_2$	3	170	16	196	318	40	454	285	
$DEh_2 \rightarrow BEh_2$	652	635	470	641	503	798	421	943	
$DEh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0	
$DEh_2 \rightarrow CZh_2$	328	957	336	984	280	457	262	725	
$DEh_2 \rightarrow DKh_2$	313	411	259	93	197	422	116	87	
$DEh_2 \rightarrow FRh_2$	704	555	837	759	571	652	553	878	
$DEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0	
$DEh_2 \rightarrow NLh_2$	390	940	276	526	312	986	276	780	
$DEh_2 \rightarrow PLh_2N$	558	488	565	485	0	0	0	0	
DEh₂ → PLh₂nbc	824	1,749	890	1,126	1,208	1,629	1,165	1,017	
$DEh_2 \rightarrow Y-NOh_2$	0	0	0	0	0	0	0	0	
DEh₂ba → DEh₂	0	0	0	0	0	0	0	0	
$DEh_2bp \rightarrow DEh_2$	89	140	104	133	0	0	0	0	
DEh₂bp → DEh₂ba	0	0	0	0	0	0	0	0	
DEZ1a → DEZ1b	896		777		872		816		
DK	668	1,543	826	2,166	729	1,525	865	2,135	
$DKh_2 \rightarrow DEh_2$	668	1,543	826	2,166	729	1,525	865	2,135	
$DKh_2 \rightarrow PLh_2N$	0	0	0	0	0	0	0	0	
$DKh_2 \rightarrow SEh_2$	0	0	0	0	0	0	0	0	
EE	199	2,362	272	3,771	165	1,785	188	3,381	
$EEh_2 \rightarrow FIh_2S$	60	0	133	0	42	0	78	0	
$EEh_2 \to LVh_2$	139	2,362	140	3,771	123	1,785	110	3,381	
ES	3,549	5,116	2,775	4,685	3,621	5,018	2,810	4,599	
ESh ₂ → FRh ₂ S	3,482	4,876	2,668	4,427	3,561	4,771	2,719	4,340	
$ESh_2 \rightarrow FRh_2SW$	0	0	0	0	0	0	0	0	
$ESh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0	
$ESh_2 \rightarrow PTh_2$	67	240	107	259	60	246	91	258	

SEPTEMBER				INFRASTRUC	TURE LEVEL			
JEF I LIVIDER		ADVA	ICED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	2	009	19	95	2	009
				SIMULAT	ION YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GWI	1/M				
FI	6,415	13,405	7,153	20,130	6,441	13,925	7,364	20,037
$Flh_2 \rightarrow Flh_2Al$	1,366	2,505	1,651	4,172	1,377	2,851	1,705	4,281
$Flh_2 \rightarrow Flh_2N$	2	9	3	11	0	13	0	16
$Flh_2 \rightarrow Flh_2S$	111	161	54	194	98	121	57	98
$Flh_2Al \rightarrow DEh_2$	2,856	3,736	3,118	5,463	2,913	4,125	3,270	5,715
$Flh_2Al \rightarrow Flh_2$	194	316	96	318	187	277	104	169
$Flh_2Al \rightarrow PLh_2N$	0	0	0	0	0	0	0	0
$Flh_2Al \rightarrow SEh_2$	7	39	19	63	0	50	0	57
$Flh_2N \rightarrow Flh_2$	1,152	1,048	1,394	1,505	1,161	979	1,431	1,493
$Flh_2N \rightarrow SEh_2$	1	369	6	354	1	445	6	374
Flh ₂ S → EEh ₂	168	2,547	169	3,987	152	1,971	140	3,594
Flh ₂ S → Flh ₂	557	2,676	642	4,063	552	3,093	650	4,240
$Flh_2S \rightarrow Flh_2SZ1$	0	0	0	0	0	0	0	0
Flh ₂ SZ1 → Flh ₂ S	0	0	0	0	0	0	0	0
FR	6,779	8,709	5,699	7,922	7,088	8,551	5,695	7,942
$FRh_2 \rightarrow BEh_2$	0	518	0	512	0	568	0	578
$FRh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0
$FRh_2 \rightarrow DEh_2$	2,505	2,204	2,039	1,659	2,631	2,042	2,139	1,627
FRh ₂ → FRh ₂ N	0	0	0	0	0	0	0	0
FRh ₂ → FRh ₂ S	407	362	440	475	505	419	403	529
FRh ₂ → FRh ₂ SW	0	0	0	0	0	0	0	0
FRh₂ → FRh₂Va	37	0	33	0	17	0	9	0
FRh ₂ → LUh ₂	0	0	0	0	0	0	0	0
$FRh_2N \rightarrow BEh_2$	0	499	0	408	0	456	0	366
$FRh_2N \rightarrow FRh_2$	0	0	0	0	0	0	0	0
FRh ₂ S → ESh ₂	383	332	429	448	458	388	364	474
$FRh_2S \rightarrow FRh_2$	3,326	4,500	2,636	4,146	3,364	4,385	2,681	4,097
FRh ₂ S → FRh ₂ SW	0	0	0	0	0	0	0	0
$FRh_2SW \rightarrow ESh_2$	0	0	0	0	0	0	0	0
FRh ₂ SW → FRh ₂	0	0	0	0	0	0	0	0
$FRh_2SW \rightarrow FRh_2S$	0	0	0	0	0	0	0	0
FRh ₂ Va → BEH ₂ Mo	100	207	99	197	90	207	76	195
FRh₂Va → FRh₂	21	88	22	77	25	86	24	76
GR	0	240	0	249	0	243	0	263
$GRh_2 \rightarrow BGh_2$	0	240	0	249	0	243	0	263
$GRh_2 \rightarrow CYh_2$	0	0	0	0	0	0	0	0
$GRh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0
۷ ۲	_	_		_		-	_	_

SEPTEMBER	INFRASTRUCTURE LEVEL								
JEI TEIVIDER		ADVAN	ICED			PCI/I	PMI		
				CLIMAT	E YEAR				
	19	95	20	009	19	95	2	009	
				SIMULAT	ION YEAR				
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040	
			Unit: GWI	ı/M					
HR	0	0	0	0	0	0	0	0	
$HRh_2 \rightarrow ALh_2$	0	0	0	0	0	0	0	0	
$HRh_2 \rightarrow BAh_2$	0	0	0	0	0	0	0	0	
$HRh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0	
$HRh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0	
$HRh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0	
HU	502	1,473	496	1,461	0	0	0	0	
$HUh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0	
HUh ₂ → HRh ₂	0	0	0	0	0	0	0	0	
HUh ₂ → IB-SKh ₂ C	0	0	0	0	0	0	0	0	
$HUh_2 \rightarrow ROh_2$	502	1,473	496	1,461	0	0	0	0	
$HUh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0	
$HUh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0	
IB	4,615	14,166	4,361	14,153	336	12,173	263	11,763	
$IB-ITh_2 \rightarrow ATh_2$	3,240	5,016	3,046	4,892	306	4,773	144	4,309	
$IB-ITh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0	
$IB-ITh_2 \rightarrow ITh_2$	0	0	0	0	30	16	119	204	
$IB-SKh_2C \rightarrow HUh_2$	590	2,645	560	2,712	0	0	0	0	
$IB-SKh_2C \rightarrow SKh_2E$	47	83	46	82	0	102	0	99	
$IB-SKh_2C \rightarrow SKh_2W$	0	960	0	935	0	2,141	0	2,200	
IB-SKh ₂ E → PLh ₂ S	0	0	0	0	0	0	0	0	
$IB-SKh_2E \rightarrow SKh_2E$	0	2,582	0	2,636	0	2,261	0	2,325	
IB-SKh₂W → ATh₂	0	0	0	22	0	9	0	65	
$IB-SKh_2W \rightarrow CZh_2$	8	1,446	11	1,463	0	2,564	0	2,265	
IB-SKh ₂ W → SKh ₂ W	730	1,435	698	1,411	0	306	0	296	
IE	0	0	0	0	0	0	0	0	
$IEh_2 \to UKh_2$	0	0	0	0	0	0	0	0	
IT	3,240	5,016	3,046	4,892	306	4,773	144	4,309	
$ITh_2 \to ESh_2$	0	0	0	0	0	0	0	0	
$ITh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0	
$ITh_2 \rightarrow IB-ITh_2$	3,240	5,016	3,046	4,892	306	4,773	144	4,309	
$ITh_2 \rightarrow MTh_2$	0	0	0	0	0	0	0	0	
$ITh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0	
LT	70	2,004	145	3,349	48	1,420	88	2,968	
$LTh_2 \rightarrow LVh_2$	70	9	145	2	48	18	88	6	
$LTh_2 \rightarrow PLh_2nbc$	0	1,995	0	3,347	0	1,402	0	2,962	

SEPTEMBER		INFRASTRUCTURE LEVEL								
JEI TEMBER		ADVAN	NCED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWI	1/M						
LU	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
LV	132	2,105	204	3,471	98	1,539	123	3,087		
$LVh_2 \rightarrow EEh_2$	63	0	136	0	43	0	81	0		
$LVh_2 \rightarrow LTh_2$	69	2,105	68	3,471	55	1,539	43	3,087		
MT	0	0	0	0	0	0	0	0		
$MTh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0		
NL	563	2,494	763	2,313	1,019	2,035	1,123	1,985		
$NLh_2 \rightarrow BEh_2$	193	1,536	296	1,628	204	1,465	296	1,582		
$NLh_2 \rightarrow DEh_2$	370	958	467	685	815	570	827	403		
$NLh_2 \rightarrow UKh_2$	0	0	0	0	0	0	0	0		
PL	824	4,197	890	4,995	1,208	3,031	1,165	3,979		
PLh ₂ N → DEh ₂	0	0	0	0	0	0	0	0		
PLh ₂ N → DKh ₂	0	0	0	0	0	0	0	0		
PLh ₂ N → Flh ₂ Al	0	0	0	0	0	0	0	0		
PLh ₂ N → PLh ₂ S	0	453	0	522	0	0	0	0		
PLh₂nbc → DEh₂	0	180	0	480	0	501	0	1,234		
PLh₂nbc → LTh₂	104	0	180	0	73	0	116	0		
$PLh_2nbc \rightarrow PLh_2N$	720	3,564	709	3,994	1,136	2,530	1,049	2,745		
PLh₂nbc → PLh₂S	0	0	0	0	0	0	0	0		
$PLh_2S \rightarrow CZh_2$	0	0	0	0	0	0	0	0		
PLh ₂ S → IB-SKh ₂ E	0	0	0	0	0	0	0	0		
$PLh_2S \rightarrow PLh_2N$	0	0	0	0	0	0	0	0		
PLh ₂ S → PLh ₂ nbc	0	0	0	0	0	0	0	0		
PT	289	0	189	0	303	0	188	0		
$PTh_2 \rightarrow ESh_2$	289	0	189	0	303	0	188	0		
RO	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow BGh_2$	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow MDh_2$	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0		
SE	1,709	1,729	1,590	1,786	1,741	1,692	1,680	1,771		
$SEh_2 \rightarrow DKh_2$	0	0	0	0	0	0	0	0		
$SEh_2 \rightarrow FIh_2AI$	1,691	1,586	1,582	1,673	1,723	1,602	1,669	1,660		
$SEh_2 \rightarrow FIh_2N$	18	144	8	113	18	90	10	111		

SEPTEMBER				INFRASTRUC	TURE LEVE			
JEI TEMBER		ADVA	NCED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	2	009	19	995	20	009
				SIMULAT	ION YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GWI	1/M				
SI	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0
$Slh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0
$Slh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0
SK	637	4,392	606	4,396	0	4,142	0	4,251
$SKh_2E \rightarrow IB-SKh_2C$	0	2,442	0	2,496	0	2,141	0	2,200
$SKh_2E \rightarrow IB-SKh_2E$	0	0	0	0	0	0	0	0
SKh₂W → IB-SKh₂C	637	1,245	606	1,234	0	102	0	99
$SKh_2W \rightarrow IB-SKh_2W$	0	705	0	666	0	1,899	0	1,952
UK	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow IEh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow NLh_2$	0	0	0	0	0	0	0	0
UKh ₂ → UKh ₂ /INT	0	0	0	0	0	0	0	0
$UKh_2/INT \rightarrow BEh_2$	0	0	0	0	0	0	0	0
UKh ₂ /INT → UKh ₂	0	0	0	0	0	0	0	0

OCTOBER		INFRASTRUCTURE LEVEL								
OCTOBER		ADVAN	NCED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	2	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWI	1/M						
AT	3,039	2,114	3,284	2,512	144	1,878	338	2,316		
$ATh_2 \rightarrow CZh_2$	0	0	0	0	0	0	0	0		
$ATh_2 \rightarrow DEh_2$	2,220	901	2,525	1,345	132	1,385	330	1,951		
$ATh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0		
$ATh_2 \rightarrow IB-ITh_2$	0	29	0	1	12	41	8	28		
$ATh_2 \rightarrow IB-SKh_2W$	819	1,184	758	1,166	0	452	0	337		
$ATh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
BE	23	1,237	13	1,731	409	1,179	477	1,718		
BEh₂ → BEH₂Mo	0	0	0	0	0	0	0	0		
$BEh_2 \rightarrow DEh_2$	23	729	13	1,211	409	614	477	1,057		
$BEh_2 \rightarrow FRh_2$	0	234	0	295	0	214	0	306		
$BEh_2 \rightarrow FRh_2N$	0	0	0	0	0	0	0	0		
$BEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0		
$BEh_2 \rightarrow NLh_2$	0	274	0	225	0	351	0	355		
$BEh_2 \rightarrow UKh_2/INT$	0	0	0	0	0	0	0	0		
$BEH_2Mo \rightarrow BEh_2$	0	0	0	0	0	0	0	0		
BEH₂Mo → FRh₂Va	0	0	0	0	0	0	0	0		
BG	110	0	106	0	110	0	105	0		
$BGh_2 \rightarrow GRh_2$	110	0	106	0	110	0	105	0		
$BGh_2 \rightarrow MKh_2$	0	0	0	0	0	0	0	0		
$BGh_2 \rightarrow ROh_2$	0	0	0	0	0	0	0	0		
СН	0	0	0	0	0	0	0	0		
$CHh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0		
$CHh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
$CHh_2 \rightarrow IB-ITh_2$	0	0	0	0	0	0	0	0		
СУ	0	0	0	0	0	0	0	0		
$CYh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0		
CZ	0	126	0	13	0	381	0	470		
$CZh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0		
$CZh_2 \rightarrow DEh_2$	0	126	0	13	0	381	0	470		
$CZh_2 \rightarrow IB-SKh_2W$	0	0	0	0	0	0	0	0		
$CZh_2 \rightarrow PLh_2S$	0	0	0	0	0	0	0	0		

OCTOBER			1	INFRASTRUC	TURE LEVEL								
OCTOBER		ADVA	NCED			PCI/	PMI						
				CLIMAT	E YEAR								
	19	95	20	009	19	95	20	009					
				SIMULAT	ION YEAR								
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040					
			Unit: GWI	n/M									
DE	3,443	3,879	3,226	3,236	2,722	3,210	2,229	2,748					
$DEh_2 \rightarrow ATh_2$	11	397	4	118	253	252	163	137					
$DEh_2 \rightarrow BEh_2$	283	268	194	145	251	542	138	299					
$DEh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0					
$DEh_2 \rightarrow CZh_2$	324	1,003	295	536	272	451	228	235					
$DEh_2 \rightarrow DKh_2$	273	51	367	181	76	62	164	179					
$DEh_2 \rightarrow FRh_2$	747	507	521	410	387	602	256	492					
$DEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0					
$DEh_2 \rightarrow NLh_2$	143	337	99	165	140	645	64	408					
$DEh_2 \rightarrow PLh_2N$	515	366	477	343	0	0	0	0					
DEh₂ → PLh₂nbc	605	712	827	1,024	946	656	978	1,000					
$DEh_2 \rightarrow Y-NOh_2$	0	0	0	0	0	0	0	0					
DEh₂ba → DEh₂	0	0	0	0	0	0	0	0					
$DEh_2bp \rightarrow DEh_2$	179	238	222	313	0	0	0	0					
DEh₂bp → DEh₂ba	0	0	0	0	0	0	0	0					
DEZ1a → DEZ1b	364		222		396		237						
DK	670	1,904	428	1,545	692	1,927	446	1,573					
$DKh_2 \rightarrow DEh_2$	670	1,904	428	1,545	692	1,927	446	1,573					
DKh ₂ → PLh ₂ N	0	0	0	0	0	0	0	0					
$DKh_2 \rightarrow SEh_2$	0	0	0	0	0	0	0	0					
EE	157	3,909	374	2,269	122	3,699	207	2,038					
$EEh_2 \rightarrow FIh_2S$	24	0	278	0	21	0	151	0					
$EEh_2 \rightarrow LVh_2$	133	3,909	97	2,269	100	3,699	56	2,038					
ES	2,758	4,469	3,240	4,840	2,770	4,403	3,255	4,805					
$ESh_2 \rightarrow FRh_2S$	2,673	4,259	3,177	4,630	2,700	4,188	3,199	4,597					
$ESh_2 \rightarrow FRh_2SW$	0	0	0	0	0	0	0	0					
$ESh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0					
$ESh_2 \rightarrow PTh_2$	85	210	62	210	70	215	56	208					

OCTOBER				INFRASTRUC	TURE LEVEL			
OCTOBER		ADVA	NCED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	20	009	19	95	20	009
				SIMULAT	ION YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GWI	1/M				
FI	8,175	22,583	5,290	14,055	8,254	22,881	5,082	14,017
$Flh_2 \rightarrow Flh_2Al$	1,920	5,052	1,205	2,897	1,952	5,202	1,186	2,938
$Flh_2 \rightarrow Flh_2N$	1	24	7	3	0	24	0	23
$Flh_2 \rightarrow Flh_2S$	28	28	60	178	35	4	58	103
$Flh_2Al \rightarrow DEh_2$	3,670	6,360	2,065	3,686	3,708	6,582	2,030	3,915
$Flh_2Al \rightarrow Flh_2$	63	67	139	369	68	31	133	282
$Flh_2Al \rightarrow PLh_2N$	0	0	0	0	0	0	0	0
$Flh_2Al \rightarrow SEh_2$	2	14	60	35	0	33	0	29
$Flh_2N \rightarrow Flh_2$	1,627	1,801	969	1,084	1,627	1,721	964	1,135
$Flh_2N \rightarrow SEh_2$	0	369	73	371	0	397	68	377
Flh ₂ S → EEh ₂	168	4,125	124	2,451	135	3,914	83	2,218
$Flh_2S \rightarrow Flh_2$	697	4,742	589	2,981	728	4,972	561	2,999
$Flh_2S \rightarrow Flh_2SZ1$	0	0	0	0	0	0	0	0
Flh₂SZ1 → Flh₂S	0	0	0	0	0	0	0	0
FR	5,650	8,161	6,400	8,449	5,457	8,066	6,342	8,561
FRh ₂ → BEh ₂	0	358	0	184	0	442	0	243
$FRh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0
$FRh_2 \rightarrow DEh_2$	2,167	2,035	2,638	2,208	2,193	1,914	2,681	2,227
FRh ₂ → FRh ₂ N	0	0	0	0	0	0	0	0
FRh ₂ → FRh ₂ S	372	378	214	245	269	416	168	301
FRh ₂ → FRh ₂ SW	0	0	0	0	0	0	0	0
FRh ₂ → FRh ₂ Va	23	0	28	3	10	0	10	3
FRh ₂ → LUh ₂	0	0	0	0	0	0	0	0
$FRh_2N \rightarrow BEh_2$	0	778	0	1,061	0	712	0	988
$FRh_2N \rightarrow FRh_2$	0	0	0	0	0	0	0	0
FRh ₂ S → ESh ₂	348	354	209	237	245	405	159	296
$FRh_2S \rightarrow FRh_2$	2,637	4,019	3,215	4,279	2,649	3,935	3,245	4,265
$FRh_2S \rightarrow FRh_2SW$	0	0	0	0	0	0	0	0
$FRh_2SW \rightarrow ESh_2$	0	0	0	0	0	0	0	0
$FRh_2SW \rightarrow FRh_2$	0	0	0	0	0	0	0	0
$FRh_2SW \rightarrow FRh_2S$	0	0	0	0	0	0	0	0
FRh ₂ Va → BEH ₂ Mo	82	175	78	171	69	176	62	178
FRh₂Va → FRh₂	20	64	18	61	20	64	18	61
GR	0	237	4	219	0	242	4	222
$GRh_2 \rightarrow BGh_2$	0	237	4	219	0	242	4	222
$GRh_2 \rightarrow CYh_2$	0	0	0	0	0	0	0	0
$GRh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0
2								

OCTOBER		INFRASTRUCTURE LEVEL								
OCTOBER		ADVAN	ICED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	2	009		
				SIMULAT	ON YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWI	ı/M						
HR	0	0	0	0	0	0	0	0		
HRh ₂ → ALh ₂	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow BAh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
ни	450	971	411	799	0	0	0	0		
$HUh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0		
$HUh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0		
HUh ₂ → IB-SKh ₂ C	0	17	0	0	0	0	0	0		
$HUh_2 \rightarrow ROh_2$	450	954	411	799	0	0	0	0		
$HUh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0		
$HUh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
IB	4,998	14,431	5,142	14,971	261	14,351	523	15,316		
$IB-ITh_2 \rightarrow ATh_2$	3,545	4,323	3,798	4,525	248	4,218	515	4,398		
IB-ITh ₂ → CHh ₂	0	0	0	0	0	0	0	0		
$IB-ITh_2 \rightarrow ITh_2$	0	29	0	1	12	41	8	28		
$IB-SKh_2C \rightarrow HUh_2$	574	2,491	529	2,364	0	0	0	0		
$IB-SKh_2C \rightarrow SKh_2E$	59	34	56	23	0	51	0	33		
$IB-SKh_2C \rightarrow SKh_2W$	0	1,527	0	1,690	0	3,259	0	3,578		
$IB-SKh_2E \rightarrow PLh_2S$	0	0	0	0	0	0	0	0		
$IB-SKh_2E \rightarrow SKh_2E$	0	3,726	0	3,960	0	3,448	0	3,797		
$IB-SKh_2W \rightarrow ATh_2$	0	149	0	152	0	348	0	253		
$IB-SKh_2W \rightarrow CZh_2$	66	1,548	56	1,850	0	2,832	0	3,128		
IB-SKh₂W → SKh₂W	753	606	702	407	0	154	0	100		
IE	0	0	0	0	0	0	0	0		
$IEh_2 \to UKh_2$	0	0	0	0	0	0	0	0		
IT	3,545	4,323	3,798	4,525	248	4,218	515	4,398		
$ITh_2 \to ESh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow IB-ITh_2$	3,545	4,323	3,798	4,525	248	4,218	515	4,398		
$ITh_2 \to MTh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
LT	28	3,516	304	1,944	26	3,302	173	1,715		
LTh ₂ → LVh ₂	28	1	304	7	25	2	173	10		
LTh ₂ → PLh ₂ nbc	0	3,515	0	1,938	1	3,300	0	1,705		

OCTOBER		INFRASTRUCTURE LEVEL							
COLODER		ADVA	NCED			PCI/	PMI		
				CLIMAT	E YEAR				
	19	95	20	009	19	95	20	009	
				SIMULAT	ION YEAR				
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040	
			Unit: GWh	ı/M					
LU	0	0	0	0	0	0	0	0	
$LUh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0	
$LUh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0	
$LUh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0	
LV	80	3,612	326	2,054	64	3,401	179	1,821	
$LVh_2 \rightarrow EEh_2$	25	0	286	0	22	0	157	0	
$LVh_2 \rightarrow LTh_2$	55	3,612	40	2,054	42	3,401	21	1,821	
MT	0	0	0	0	0	0	0	0	
$MTh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0	
NL	1,261	3,068	1,525	3,252	1,478	2,344	1,696	2,671	
$NLh_2 \rightarrow BEh_2$	249	1,326	220	777	216	1,456	183	928	
$NLh_2 \rightarrow DEh_2$	1,013	1,742	1,305	2,475	1,262	888	1,513	1,743	
$NLh_2 \rightarrow UKh_2$	0	0	0	0	0	0	0	0	
PL	605	4,439	827	3,099	947	3,957	978	2,705	
PLh ₂ N → DEh ₂	0	14	0	6	0	0	0	0	
PLh ₂ N → DKh ₂	0	0	0	0	0	0	0	0	
$PLh_2N \rightarrow FIh_2AI$	0	0	0	0	0	0	0	0	
PLh ₂ N → PLh ₂ S	0	197	0	131	0	0	0	0	
$PLh_2nbc \rightarrow DEh_2$	0	493	0	284	0	1,365	0	715	
PLh₂nbc → LTh₂	37	0	359	0	34	0	212	0	
$PLh_2nbc \rightarrow PLh_2N$	568	3,734	468	2,678	913	2,591	766	1,991	
PLh₂nbc → PLh₂S	0	0	0	0	0	0	0	0	
$PLh_2S \rightarrow CZh_2$	0	0	0	0	0	0	0	0	
PLh ₂ S → IB-SKh ₂ E	0	0	0	0	0	0	0	0	
$PLh_2S \rightarrow PLh_2N$	0	0	0	0	0	0	0	0	
PLh ₂ S → PLh ₂ nbc	0	0	0	0	0	0	0	0	
PT	211	0	250	0	208	0	240	0	
PTh ₂ → ESh ₂	211	0	250	0	208	0	240	0	
RO	0	6	0	0	0	0	0	0	
$ROh_2 \rightarrow BGh_2$	0	0	0	0	0	0	0	0	
$ROh_2 \rightarrow HUh_2$	0	6	0	0	0	0	0	0	
$ROh_2 \rightarrow MDh_2$	0	0	0	0	0	0	0	0	
$ROh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0	
SE	1,821	1,423	1,075	1,272	1,832	1,459	993	1,328	
$SEh_2 \rightarrow DKh_2$	0	0	0	0	0	0	0	0	
$SEh_2 \rightarrow FIh_2AI$	1,814	1,389	1,059	1,193	1,824	1,445	977	1,288	
$SEh_2 \rightarrow FIh_2N$	7	34	17	79	8	13	16	40	

OCTOBER				INFRASTRUC	TURE LEVEL			
OCTOBER		ADVAN	NCED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	2	009	19	95	20	009
				SIMULAT	ON YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GWI	1/M				
SI	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0
$Slh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0
SK	633	5,152	586	5,320	0	6,191	0	6,756
SKh₂E → IB-SKh₂C	0	3,513	0	3,729	0	3,259	0	3,578
$SKh_2E \rightarrow IB-SKh_2E$	0	0	0	0	0	0	0	0
SKh ₂ W → IB-SKh ₂ C	633	522	586	347	0	51	0	33
SKh₂W → IB-SKh₂W	0	1,118	0	1,243	0	2,881	0	3,145
UK	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow IEh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow NLh_2$	0	0	0	0	0	0	0	0
UKh ₂ → UKh ₂ /INT	0	0	0	0	0	0	0	0
$UKh_2/INT \rightarrow BEh_2$	0	0	0	0	0	0	0	0
UKh ₂ /INT → UKh ₂	0	0	0	0	0	0	0	0

NOVEMBER				INFRASTRUC	TURE LEVEL			
NOVEMBER		ADVA	NCED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	20	009	19	95	20	009
				SIMULAT	ION YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GW	ı/M				
AT	3,446	2,306	2,834	2,024	466	2,323	144	1,668
$ATh_2 \rightarrow CZh_2$	0	0	0	0	0	0	0	0
$ATh_2 \rightarrow DEh_2$	2,732	1,369	1,854	827	466	1,855	144	1,196
$ATh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0
$ATh_2 \rightarrow IB-ITh_2$	0	0	0	4	0	2	0	5
$ATh_2 \rightarrow IB-SKh_2W$	715	937	980	1,193	0	466	0	467
$ATh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0
BE	52	1,902	32	1,167	616	1,957	373	1,161
$BEh_2 \rightarrow BEH_2Mo$	0	0	0	0	0	0	0	0
$BEh_2 \rightarrow DEh_2$	52	1,332	32	973	616	1,172	373	774
$BEh_2 \rightarrow FRh_2$	0	136	0	92	0	147	0	106
$BEh_2 \rightarrow FRh_2N$	0	0	0	0	0	0	0	0
$BEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0
$BEh_2 \rightarrow NLh_2$	0	434	0	102	0	638	0	282
$BEh_2 \rightarrow UKh_2/INT$	0	0	0	0	0	0	0	0
$BEH_2Mo \rightarrow BEh_2$	0	0	0	0	0	0	0	0
BEH₂Mo → FRh₂Va	0	0	0	0	0	0	0	0
BG	102	0	101	0	102	0	101	0
BGh₂ → GRh₂	102	0	101	0	102	0	101	0
$BGh_2 \rightarrow MKh_2$	0	0	0	0	0	0	0	0
$BGh_2 \rightarrow ROh_2$	0	0	0	0	0	0	0	0
СН	0	0	0	0	0	0	0	0
$CHh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0
$CHh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0
$CHh_2 \rightarrow IB-ITh_2$	0	0	0	0	0	0	0	0
CY	0	0	0	0	0	0	0	0
$CYh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0
CZ	0	191	0	11	0	667	0	178
$CZh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0
$CZh_2 \rightarrow DEh_2$	0	191	0	11	0	667	0	178
$CZh_2 \rightarrow IB-SKh_2W$	0	0	0	0	0	0	0	0
$CZh_2 \rightarrow PLh_2S$	0	0	0	0	0	0	0	0

NOVEMBER				INFRASTRUC	TURE LEVEL			3,624 704 302 0 1,043 97 331 0 219 0 928 0 0 0					
NOVEMBER		ADVAI	NCED			PCI/	PMI						
				CLIMAT	E YEAR								
	19	95	20	009	19	95	20	009					
				SIMULAT	ION YEAR								
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040					
			Unit: GWI	h/M									
DE	2,666	2,541	3,328	4,588	1,727	1,771	3,074	3,624					
$DEh_2 \rightarrow ATh_2$	5	66	10	896	83	123	244	704					
$DEh_2 \rightarrow BEh_2$	114	154	171	210	100	205	231	302					
$DEh_2 \to CHh_2$	0	0	0	0	0	0	0	0					
$DEh_2 \rightarrow CZh_2$	249	575	360	1,350	198	152	308	1,043					
$DEh_2 \rightarrow DKh_2$	520	130	442	91	258	145	278	97					
$DEh_2 \rightarrow FRh_2$	411	181	434	357	248	200	374	331					
$DEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0					
$DEh_2 \rightarrow NLh_2$	48	223	38	121	38	339	48	219					
$DEh_2 \rightarrow PLh_2N$	430	249	543	378	0	0	0	0					
$DEh_2 \rightarrow PLh_2nbc$	443	664	912	981	611	607	1,221	928					
$DEh_2 \rightarrow Y-NOh_2$	0	0	0	0	0	0	0	0					
DEh₂ba → DEh₂	0	0	0	0	0	0	0	0					
$DEh_2bp \rightarrow DEh_2$	273	300	147	204	0	0	0	0					
DEh₂bp → DEh₂ba	0	0	0	0	0	0	0	0					
DEZ1a → DEZ1b	172		271		190		371						
DK	256	947	656	1,922	266	965	661	1,898					
$DKh_2 \rightarrow DEh_2$	256	947	656	1,922	266	965	661	1,898					
$DKh_2 \rightarrow PLh_2N$	0	0	0	0	0	0	0	0					
$DKh_2 \rightarrow SEh_2$	0	0	0	0	0	0	0	0					
EE	188	2,783	365	2,681	105	2,627	242	2,457					
$EEh_2 \rightarrow FIh_2S$	67	0	259	0	33	0	162	0					
$\text{EEh}_2 \rightarrow \text{LVh}_2$	120	2,783	107	2,681	72	2,627	80	2,457					
ES	3,185	5,400	4,203	5,747	3,205	5,469	4,192	5,862					
$ESh_2 \rightarrow FRh_2S$	3,100	5,200	4,139	5,514	3,122	5,278	4,130	5,631					
ESh ₂ → FRh ₂ SW	0	0	0	0	0	0	0	0					
$ESh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0					
$ESh_2 \rightarrow PTh_2$	86	200	63	233	82	191	62	231					
					-								

NOVEMBER			INFRASTRUCTURE LEVEL							
NOVEMBER		ADVAN	NCED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	2	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GW	1/M						
FI	6,146	23,618	5,040	17,676	6,380	24,021	5,075	17,911		
$Flh_2 \rightarrow Flh_2Al$	1,683	5,941	1,225	3,925	1,777	6,120	1,231	4,091		
$Flh_2 \rightarrow Flh_2N$	2	15	8	7	0	29	0	7		
$Flh_2 \rightarrow Flh_2S$	0	0	46	159	0	0	47	117		
$Flh_2Al \rightarrow DEh_2$	2,169	6,249	1,883	5,022	2,301	6,406	1,989	5,277		
$Flh_2Al \rightarrow Flh_2$	3	0	101	277	5	0	102	206		
$Flh_2Al \rightarrow PLh_2N$	0	0	0	0	0	0	0	0		
Flh ₂ Al → SEh ₂	10	83	42	36	0	91	0	24		
$Flh_2N \rightarrow Flh_2$	1,425	1,301	1,018	1,285	1,463	1,286	1,032	1,369		
$Flh_2N \rightarrow SEh_2$	63	923	23	227	46	970	33	190		
$Flh_2S \rightarrow EEh_2$	151	2,986	133	2,864	102	2,824	106	2,641		
$Flh_2S \rightarrow Flh_2$	641	6,119	561	3,875	686	6,294	535	3,988		
Flh₂S → Flh₂SZ1	0	0	0	0	0	0	0	0		
$Flh_2SZ1 \rightarrow Flh_2S$	0	0	0	0	0	0	0	0		
FR	5,700	9,305	8,102	10,045	5,708	9,529	7,979	10,105		
FRh ₂ → BEh ₂	0	222	0	380	0	278	0	434		
FRh ₂ → CHh ₂	0	0	0	0	0	0	0	0		
$FRh_2 \rightarrow DEh_2$	2,217	2,901	3,164	2,983	2,267	3,038	3,171	2,977		
FRh ₂ → FRh ₂ N	0	0	0	0	0	0	0	0		
FRh ₂ → FRh ₂ S	157	19	464	270	137	20	419	266		
FRh ₂ → FRh ₂ SW	0	0	0	0	0	0	0	0		
FRh ₂ → FRh ₂ Va	36	0	33	0	23	0	20	0		
$FRh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0		
$FRh_2N \rightarrow BEh_2$	0	1,040	0	720	0	1,013	0	680		
$FRh_2N \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
$FRh_2S \rightarrow ESh_2$	144	18	408	261	120	16	363	262		
$FRh_2S \rightarrow FRh_2$	3,067	4,917	3,906	5,144	3,093	4,973	3,892	5,202		
FRh ₂ S → FRh ₂ SW	0	0	0	0	0	0	0	0		
FRh ₂ SW → ESh ₂	0	0	0	0	0	0	0	0		
FRh ₂ SW → FRh ₂	0	0	0	0	0	0	0	0		
FRh ₂ SW → FRh ₂ S	0	0	0	0	0	0	0	0		
FRh ₂ Va → BEH ₂ Mo	70	139	101	206	57	142	87	205		
FRh ₂ Va → FRh ₂	10	49	27	81	11	49	27	80		
GR	0	155	0	157	0	163	0	157		
$GRh_2 \rightarrow BGh_2$	0	155	0	157	0	163	0	157		
$GRh_2 \rightarrow CYh_2$	0	0	0	0	0	0	0	0		
$GRh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0		
22			T. C.							

NOVEMBER		INFRASTRUCTURE LEVEL								
NOVLIVIDER		ADVAN	ICED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GW	n/M						
HR	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow ALh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \to BAh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \to RSh_2$	0	0	0	0	0	0	0	0		
$HRh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
ни	358	539	582	865	0	0	0	0		
$HUh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0		
$HUh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0		
$HUh_2 \rightarrow IB\text{-SKh}_2C$	0	5	0	0	0	0	0	0		
$HUh_2 \rightarrow ROh_2$	358	534	582	864	0	0	0	0		
$HUh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0		
$HUh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
IB	5,185	14,586	5,120	13,423	725	14,971	315	11,979		
$IB\text{-}ITh_2 \to ATh_2$	3,931	4,469	3,323	4,216	725	4,511	315	4,176		
$IB-ITh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0		
$IB-ITh_2 \rightarrow ITh_2$	0	0	0	4	0	2	0	5		
$IB\text{-}SKh_2C \rightarrow HUh_2$	482	1,993	755	2,427	0	0	0	0		
$IB-SKh_2C \rightarrow SKh_2E$	57	33	63	30	0	41	0	90		
$IB\text{-SKh_2C} \to SKh_2W$	0	1,920	0	1,295	0	3,376	0	2,464		
$IB-SKh_2E \rightarrow PLh_2S$	0	0	0	0	0	0	0	0		
$IB-SKh_2E \rightarrow SKh_2E$	0	3,708	0	3,311	0	3,564	0	2,620		
$IB\text{-}SKh_2W \rightarrow ATh_2$	0	498	0	213	0	580	0	357		
$IB-SKh_2W \rightarrow CZh_2$	60	1,447	36	1,123	0	2,775	0	1,994		
IB-SKh ₂ W → SKh ₂ W	655	516	944	804	0	123	0	274		
IE	0	0	0	0	0	0	0	0		
$IEh_2 \rightarrow UKh_2$	0	0	0	0	0	0	0	0		
IT	3,931	4,469	3,323	4,216	725	4,511	315	4,176		
$ITh_2 \rightarrow ESh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \to GRh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \to IB\text{-}ITh_2$	3,931	4,469	3,323	4,216	725	4,511	315	4,176		
$ITh_2 \to MTh_2$	0	0	0	0	0	0	0	0		
$ITh_2 \to SIh_2$	0	0	0	0	0	0	0	0		
LT	75	2,348	283	2,457	40	2,250	182	2,234		
$LTh_2 \rightarrow LVh_2$	75	3	283	5	40	3	182	13		
$LTh_2 \rightarrow PLh_2nbc$	0	2,345	0	2,452	1	2,246	0	2,221		

NOVEMBER		INFRASTRUCTURE LEVEL								
110 V LIVIDLIN		ADVAN	NCED			PCI/	PMI			
				CLIMAT	E YEAR					
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GW	n/M						
LU	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0		
$LUh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
LV	129	2,524	318	2,444	68	2,374	198	2,220		
$LVh_2 \rightarrow EEh_2$	70	0	266	0	35	0	168	0		
$LVh_2 \rightarrow LTh_2$	60	2,524	52	2,444	33	2,374	29	2,220		
МТ	0	0	0	0	0	0	0	0		
$MTh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0		
NL	1,617	2,712	1,131	3,098	1,781	2,106	1,368	2,706		
$NLh_2 \rightarrow BEh_2$	141	742	307	1,540	103	842	216	1,614		
$NLh_2 \rightarrow DEh_2$	1,476	1,971	824	1,558	1,678	1,264	1,152	1,092		
$NLh_2 \rightarrow UKh_2$	0	0	0	0	0	0	0	0		
PL	443	3,142	912	3,652	612	2,855	1,221	3,149		
$PLh_2N \rightarrow DEh_2$	0	33	0	18	0	0	0	0		
PLh ₂ N → DKh ₂	0	0	0	0	0	0	0	0		
$PLh_2N \rightarrow FIh_2AI$	0	0	0	0	0	0	0	0		
$PLh_2N \rightarrow PLh_2S$	0	99	0	202	0	0	0	0		
PLh₂nbc → DEh₂	0	440	0	322	0	928	0	868		
$PLh_2nbc \rightarrow LTh_2$	91	0	316	0	50	0	204	0		
$PLh_2nbc \rightarrow PLh_2N$	353	2,569	596	3,110	562	1,926	1,017	2,281		
PLh₂nbc → PLh₂S	0	0	0	0	0	0	0	0		
$PLh_2S \rightarrow CZh_2$	0	0	0	0	0	0	0	0		
PLh ₂ S → IB-SKh ₂ E	0	0	0	0	0	0	0	0		
$PLh_2S \rightarrow PLh_2N$	0	0	0	0	0	0	0	0		
PLh ₂ S → PLh ₂ nbc	0	1	0	0	0	1	0	0		
PT	195	0	335	0	185	0	334	0		
PTh ₂ → ESh ₂	195	0	335	0	185	0	334	0		
RO	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow BGh_2$	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow MDh_2$	0	0	0	0	0	0	0	0		
$ROh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0		
SE	500	391	813	1,464	531	376	875	1,474		
$SEh_2 \rightarrow DKh_2$	0	0	0	0	0	0	0	0		
$SEh_2 \rightarrow FIh_2AI$	500	391	801	1,410	530	376	860	1,416		
$SEh_2 \rightarrow FIh_2N$	1	0	12	53	1	0	15	58		

NOVEMBER				INFRASTRUC	TURE LEVEL			
NOVEMBER		ADVA	ICED			PCI/	PMI	
				CLIMAT	E YEAR			
	19	95	20	009	19	95	20	009
				SIMULAT	ON YEAR			
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040
			Unit: GWI	1/M				
SI	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0
$SIh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0
$Slh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0
$Slh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0
SK	540	5,466	818	4,699	0	6,428	0	4,712
$SKh_2E \rightarrow IB-SKh_2C$	0	3,498	0	3,094	0	3,376	0	2,464
$SKh_2E \rightarrow IB-SKh_2E$	0	0	0	0	0	0	0	0
SKh ₂ W → IB-SKh ₂ C	540	444	818	658	0	41	0	90
$SKh_2W \rightarrow IB-SKh_2W$	0	1,525	0	947	0	3,011	0	2,158
UK	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow IEh_2$	0	0	0	0	0	0	0	0
$UKh_2 \rightarrow NLh_2$	0	0	0	0	0	0	0	0
UKh ₂ → UKh ₂ /INT	0	0	0	0	0	0	0	0
$UKh_2/INT \rightarrow BEh_2$	0	0	0	0	0	0	0	0
UKh ₂ /INT => UKh ₂	0	0	0	0	0	0	0	0

DECEMBER	INFRASTRUCTURE LEVEL									
DECEMBER		ADVANCED PCI/PMI								
		CLIMATE YEAR								
	19	95	20	009	19	95	20	009		
				SIMULAT	ION YEAR					
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040		
			Unit: GWh	ı/M						
AT	3,546	1,420	3,669	1,597	392	1,906	472	1,610		
$ATh_2 \rightarrow CZh_2$	0	0	0	0	0	0	0	0		
$ATh_2 \rightarrow DEh_2$	3,005	1,170	2,823	1,119	392	1,800	472	1,463		
$ATh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0		
$ATh_2 \rightarrow IB-ITh_2$	0	0	0	0	0	0	0	0		
$ATh_2 \rightarrow IB-SKh_2W$	541	250	846	478	0	106	0	147		
$ATh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0		
ВА	0	0	0	0	0	0	0	0		
$BAh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0		
BE	34	2,669	31	2,025	804	2,853	672	1,938		
BEh₂ → BEH₂Mo	0	0	0	0	0	0	0	0		
BEh ₂ → DEh ₂	34	1,130	31	1,515	804	1,124	672	1,335		
$BEh_2 \rightarrow FRh_2$	0	166	0	176	0	179	0	166		
$BEh_2 \rightarrow FRh_2N$	0	0	0	0	0	0	0	0		
$BEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0		
$BEh_2 \rightarrow NLh_2$	0	1,374	0	334	0	1,550	0	437		
BEh ₂ → UKh ₂ /INT	0	0	0	0	0	0	0	0		
$BEH_2Mo \rightarrow BEh_2$	0	0	0	0	0	0	0	0		
BEH₂Mo → FRh₂Va	0	0	0	0	0	0	0	0		
BG	100	0	100	0	100	0	100	0		
$BGh_2 \rightarrow GRh_2$	100	0	100	0	100	0	100	0		
$BGh_2 \rightarrow MKh_2$	0	0	0	0	0	0	0	0		
$BGh_2 \rightarrow ROh_2$	0	0	0	0	0	0	0	0		
СН	0	0	0	0	0	0	0	0		
CHh ₂ → DEh ₂	0	0	0	0	0	0	0	0		
$CHh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0		
CHh ₂ → IB-ITh ₂	0	0	0	0	0	0	0	0		
СҮ	0	0	0	0	0	0	0	0		
$CYh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0		
CZ	0	748	0	148	0	806	0	479		
$CZh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0		
$CZh_2 \rightarrow DEh_2$	0	748	0	148	0	806	0	479		
$CZh_2 \rightarrow IB-SKh_2W$	0	0	0	0	0	0	0	0		
CZh ₂ → PLh ₂ S	0	0	0	0	0	0	0	0		

DECEMBER	INFRASTRUCTURE LEVEL								
DECEMBER	ADVANCED PCI/PMI								
	CLIMATE YEAR								
	19	95	20	009	19	95	20	009	
				SIMULAT	ION YEAR				
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040	
			Unit: GWI	ı/M					
DE	1,530	1,484	2,031	1,839	660	1,432	1,178	1,055	
$DEh_2 \rightarrow ATh_2$	1	10	0	38	29	19	61	44	
$DEh_2 \rightarrow BEh_2$	20	32	79	24	20	54	27	42	
$DEh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0	
$DEh_2 \rightarrow CZh_2$	117	203	225	394	98	7	186	12	
$DEh_2 \rightarrow DKh_2$	494	67	515	148	188	108	253	158	
$DEh_2 \rightarrow FRh_2$	8	28	104	0	0	39	64	9	
$DEh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0	
$DEh_2 \rightarrow NLh_2$	2	518	37	81	2	1,015	18	163	
$DEh_2 \rightarrow PLh_2N$	288	107	422	247	0	0	0	0	
$DEh_2 \rightarrow PLh_2nbc$	252	136	365	526	287	190	569	627	
$DEh_2 \rightarrow Y-NOh_2$	0	0	0	0	0	0	0	0	
DEh₂ba → DEh₂	0	0	0	0	0	0	0	0	
$DEh_2bp \rightarrow DEh_2$	335	383	286	381	0	0	0	0	
DEh₂bp → DEh₂ba	0	0	0	0	0	0	0	0	
DEZ1a → DEZ1b	13		0		37		0		
DK	39	596	101	783	57	619	112	780	
$DKh_2 \rightarrow DEh_2$	39	596	101	783	57	619	112	780	
$DKh_2 \rightarrow PLh_2N$	0	0	0	0	0	0	0	0	
$DKh_2 \rightarrow SEh_2$	0	0	0	0	0	0	0	0	
EE	141	1,803	141	2,276	68	2,478	104	2,202	
EEh ₂ → FIh ₂ S	73	0	28	0	45	0	40	0	
$EEh_2 \rightarrow LVh_2$	68	1,803	113	2,276	23	2,478	63	2,202	
ES	4,124	5,408	4,383	5,728	4,024	5,519	4,421	5,770	
$ESh_2 \rightarrow FRh_2S$	4,094	5,231	4,352	5,515	3,994	5,343	4,394	5,563	
ESh ₂ → FRh ₂ SW	0	0	0	0	0	0	0	0	
$ESh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0	
$ESh_2 \rightarrow PTh_2$	30	177	31	212	30	177	27	208	

DECEMBER	INFRASTRUCTURE LEVEL								
DESCINIDEN	ADVANCED PCI/PMI								
				CLIMAT	E YEAR				
	19	95	20	009	19	95	20	009	
				SIMULAT	ION YEAR				
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040	
			Unit: GW	n/M					
FI	4,705	20,758	5,965	20,004	4,891	21,037	6,080	20,520	
$Flh_2 \rightarrow Flh_2Al$	1,287	5,406	1,531	4,924	1,372	5,336	1,585	5,084	
$Flh_2 \rightarrow Flh_2N$	1	1	0	26	0	5	0	48	
$Flh_2 \rightarrow Flh_2S$	4	6	20	0	3	2	13	0	
Flh ₂ Al → DEh ₂	1,650	5,927	2,331	5,496	1,742	5,953	2,402	5,715	
$Flh_2Al \rightarrow Flh_2$	22	18	45	6	22	8	34	6	
Flh₂Al → PLh₂N	0	0	0	0	0	0	0	0	
Flh ₂ Al → SEh ₂	8	7	0	45	0	11	0	51	
$Flh_2N \rightarrow Flh_2$	1,041	1,300	1,295	1,220	1,072	1,368	1,290	1,264	
$FIh_2N \rightarrow SEh_2$	24	714	8	804	13	605	9	822	
$Flh_2S \rightarrow EEh_2$	95	1,967	145	2,454	49	2,619	94	2,378	
$Flh_2S \rightarrow Flh_2$	573	5,411	589	5,028	619	5,131	653	5,151	
$Flh_2S \rightarrow Flh_2SZ1$	0	0	0	0	0	0	0	0	
$Flh_2SZ1 \rightarrow Flh_2S$	0	0	0	0	0	0	0	0	
FR	6,860	10,219	7,768	9,950	6,713	10,541	7,833	9,892	
$FRh_2 \rightarrow BEh_2$	0	231	0	97	0	266	0	145	
$FRh_2 \rightarrow CHh_2$	0	0	0	0	0	0	0	0	
$FRh_2 \rightarrow DEh_2$	2,692	3,493	3,194	3,067	2,696	3,644	3,307	3,046	
FRh ₂ → FRh ₂ N	0	0	0	0	0	0	0	0	
FRh ₂ → FRh ₂ S	0	0	20	0	0	0	10	0	
FRh ₂ → FRh ₂ SW	0	0	0	0	0	0	0	0	
FRh ₂ → FRh ₂ Va	48	0	52	0	17	0	25	0	
$FRh_2 \rightarrow LUh_2$	0	0	0	0	0	0	0	0	
$FRh_2N \rightarrow BEh_2$	0	1,395	0	1,348	0	1,390	0	1,241	
$FRh_2N \rightarrow FRh_2$	0	0	0	0	0	0	0	0	
$FRh_2S \rightarrow ESh_2$	0	0	20	0	0	0	9	0	
$FRh_2S \rightarrow FRh_2$	4,053	4,977	4,390	5,232	3,964	5,120	4,416	5,256	
$FRh_2S \rightarrow FRh_2SW$	0	0	0	0	0	0	0	0	
FRh ₂ SW → ESh ₂	0	0	0	0	0	0	0	0	
$FRh_2SW \rightarrow FRh_2$	0	0	0	0	0	0	0	0	
FRh ₂ SW → FRh ₂ S	0	0	0	0	0	0	0	0	
FRh₂Va → BEH₂Mo	64	96	82	156	32	94	56	154	
FRh₂Va → FRh₂	4	27	9	51	4	26	9	50	
GR	0	117	0	138	0	118	0	144	
$GRh_2 \rightarrow BGh_2$	0	117	0	138	0	118	0	144	
$GRh_2 \rightarrow CYh_2$	0	0	0	0	0	0	0	0	
GRh₂ → ITh₂	0	0	0	0	0	0	0	0	

DECEMBER	INFRASTRUCTURE LEVEL								
DECEMBER	ADVANCED PCI/PMI								
	CLIMATE YEAR								
	19	95	20	009	19	95	2	009	
				SIMULAT	ION YEAR				
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040	
			Unit: GW	n/M					
HR	0	0	0	0	0	0	0	0	
HRh₂ → ALh₂	0	0	0	0	0	0	0	0	
HRh₂ → BAh₂	0	0	0	0	0	0	0	0	
$HRh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0	
$HRh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0	
$HRh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0	
HU	183	234	387	481	0	0	0	0	
$HUh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0	
$HUh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0	
HUh₂ → IB-SKh₂C	0	44	0	21	0	0	0	0	
$HUh_2 \rightarrow ROh_2$	183	190	387	460	0	0	0	0	
$HUh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0	
$HUh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0	
IB	4,890	15,179	5,609	14,503	672	16,450	793	15,751	
IB-ITh ₂ → ATh ₂	4,043	3,856	4,176	3,793	672	4,135	793	3,854	
IB-ITh ₂ → CHh ₂	0	0	0	0	0	0	0	0	
IB-ITh ₂ → ITh ₂	0	0	0	0	0	0	0	0	
IB-SKh₂C → HUh₂	255	1,343	524	1,892	0	0	0	0	
$IB-SKh_2C \rightarrow SKh_2E$	51	5	63	7	0	8	0	13	
$IB-SKh_2C \rightarrow SKh_2W$	0	2,885	0	2,267	0	4,114	0	3,984	
$IB-SKh_2E \rightarrow PLh_2S$	0	0	0	0	0	0	0	0	
$IB-SKh_2E \rightarrow SKh_2E$	0	4,323	0	4,276	0	4,305	0	4,228	
$IB-SKh_2W \rightarrow ATh_2$	0	963	0	617	0	1,245	0	666	
$IB-SKh_2W \rightarrow CZh_2$	130	1,697	133	1,506	0	2,618	0	2,967	
$IB-SKh_2W \rightarrow SKh_2W$	410	107	714	146	0	25	0	40	
IE	0	0	0	0	0	0	0	0	
IEh ₂ → UKh ₂	0	0	0	0	0	0	0	0	
IT	4,043	3,856	4,176	3,793	672	4,135	793	3,854	
$ITh_2 \rightarrow ESh_2$	0	0	0	0	0	0	0	0	
$ITh_2 \rightarrow GRh_2$	0	0	0	0	0	0	0	0	
$ITh_2 \rightarrow IB-ITh_2$	4,043	3,856	4,176	3,793	672	4,135	793	3,854	
$ITh_2 \rightarrow MTh_2$	0	0	0	0	0	0	0	0	
$ITh_2 \rightarrow SIh_2$	0	0	0	0	0	0	0	0	
LT	81	1,668	32	2,022	50	2,493	47	1,991	
$LTh_2 \rightarrow LVh_2$	81	5	32	2	50	5	47	3	
22	-			_					

DECEMBER	INFRASTRUCTURE LEVEL								
DECLIVIDER	ADVANCED PCI/PMI								
	CLIMATE YEAR								
	19	95	20	009	19	95	20	009	
				SIMULAT	ION YEAR				
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040	
			Unit: GW	n/M					
LU	0	0	0	0	0	0	0	0	
$LUh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0	
$LUh_2 \rightarrow DEh_2$	0	0	0	0	0	0	0	0	
$LUh_2 \rightarrow FRh_2$	0	0	0	0	0	0	0	0	
LV	106	1,654	86	2,076	53	2,347	70	2,008	
LVh ₂ → EEh ₂	75	0	29	0	46	0	42	0	
$LVh_2 \rightarrow LTh_2$	31	1,654	57	2,076	7	2,347	28	2,008	
MT	0	0	0	0	0	0	0	0	
$MTh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0	
NL	1,867	1,960	1,655	2,596	1,967	1,504	1,871	1,768	
$NLh_2 \rightarrow BEh_2$	29	295	119	334	20	349	78	352	
$NLh_2 \rightarrow DEh_2$	1,838	1,665	1,537	2,262	1,947	1,155	1,793	1,416	
$NLh_2 \rightarrow UKh_2$	0	0	0	0	0	0	0	0	
PL	252	2,053	365	2,627	287	2,828	569	2,617	
$PLh_2N \rightarrow DEh_2$	0	114	0	18	0	0	0	0	
$PLh_2N \rightarrow DKh_2$	0	0	0	0	0	0	0	0	
$PLh_2N \rightarrow FIh_2AI$	0	0	0	0	0	0	0	0	
$PLh_2N \rightarrow PLh_2S$	0	17	0	63	0	0	0	0	
$PLh_2nbc \rightarrow DEh_2$	0	933	0	328	0	1,851	0	872	
PLh₂nbc → LTh₂	92	0	46	0	56	0	53	0	
PLh ₂ nbc → PLh ₂ N	160	927	319	2,219	231	903	516	1,745	
PLh₂nbc → PLh₂S	0	0	0	0	0	0	0	0	
$PLh_2S \rightarrow CZh_2$	0	0	0	0	0	0	0	0	
PLh ₂ S → IB-SKh ₂ E	0	0	0	0	0	0	0	0	
$PLh_2S \rightarrow PLh_2N$	0	0	0	0	0	0	0	0	
$PLh_2S \rightarrow PLh_2nbc$	0	61	0	0	0	74	0	1	
PT	371	0	412	0	364	0	411	0	
$PTh_2 \rightarrow ESh_2$	371	0	412	0	364	0	411	0	
RO	0	1	0	6	0	0	0	0	
$ROh_2 \rightarrow BGh_2$	0	0	0	0	0	0	0	0	
$ROh_2 \rightarrow HUh_2$	0	1	0	6	0	0	0	0	
$ROh_2 \rightarrow MDh_2$	0	0	0	0	0	0	0	0	
$ROh_2 \rightarrow RSh_2$	0	0	0	0	0	0	0	0	
SE	398	553	851	626	396	644	855	691	
$SEh_2 \rightarrow DKh_2$	0	0	0	0	0	0	0	0	
SEh ₂ → FIh ₂ AI	393	545	846	623	392	636	851	688	
$SEh_2 \rightarrow FIh_2N$	4	8	5	3	4	8	4	3	

DECEMBER	INFRASTRUCTURE LEVEL								
DECEMBER		ADVANCED PCI/PMI							
				CLIMAT	E YEAR				
	19	95	2	009	19	95	20	009	
				SIMULAT	ON YEAR				
COUNTRY	2030	2040	2030	2040	2030	2040	2030	2040	
			Unit: GWI	1/M					
SI	0	0	0	0	0	0	0	0	
$Slh_2 \rightarrow ATh_2$	0	0	0	0	0	0	0	0	
$SIh_2 \rightarrow HRh_2$	0	0	0	0	0	0	0	0	
$Slh_2 \rightarrow HUh_2$	0	0	0	0	0	0	0	0	
$Slh_2 \rightarrow ITh_2$	0	0	0	0	0	0	0	0	
SK	306	6,706	586	5,935	0	7,904	0	7,523	
$SKh_2E \rightarrow IB-SKh_2C$	0	4,098	0	4,022	0	4,114	0	3,984	
$SKh_2E \rightarrow IB-SKh_2E$	0	0	0	0	0	0	0	0	
$SKh_2W \rightarrow IB-SKh_2C$	306	91	586	123	0	8	0	13	
SKh₂W → IB-SKh₂W	0	2,517	0	1,790	0	3,782	0	3,526	
UK	0	0	0	0	0	0	0	0	
$UKh_2 \rightarrow BEh_2$	0	0	0	0	0	0	0	0	
$UKh_2 \rightarrow IEh_2$	0	0	0	0	0	0	0	0	
$UKh_2 \rightarrow NLh_2$	0	0	0	0	0	0	0	0	
UKh ₂ → UKh ₂ /INT	0	0	0	0	0	0	0	0	
$UKh_2/INT \rightarrow BEh_2$	0	0	0	0	0	0	0	0	

LIST OF **FIGURES**

Figure 1:	Representation of the PCI/PMI hydrogen infrastructure level.	12
Figure 2:	Representation of the Advanced hydrogen infrastructure level.	16
Figure 3:	Distribution of hydrogen production via electrolysis in the PCI/PMI hydrogen infrastructure level in 2030 for reference weather year (unit: GWh/y)	24
Figure 4:	Distribution of hydrogen production from natural gas in the PCI/PMI hydrogen infrastructure level in 2030 for reference weather year (unit: GWh/y)	25
Figure 5:	Grid flows* in the PCI/PMI hydrogen infrastructure level in 2030 for reference weather year (unit: GWh/y).	27
Figure 6:	Distribution of hydrogen production via electrolysis in the PCI/PMI hydrogen infrastructure level in 2030 for stressful weather year (unit: GWh/y).	29
Figure 7:	Distribution of hydrogen production from natural gas in the PCI/PMI hydrogen infrastructure level in 2030 for stressful weather year (unit: GWh/y)	30
Figure 8:	Grid flows* in the PCI/PMI hydrogen infrastructure level in 2030 for stressful weather year (unit: GWh/y).	32
Figure 9:	Average of the hourly hydrogen market clearing prices per country in the PCI/PMI hydrogen infrastructure level in 2030 (unit: €/MWh)	33
Figure 10:	Yearly average hydrogen demand curtailment rate at country/sub-zone level in the PCI/PMI hydrogen infrastructure level in 2030 for reference weather year (unit: %)	36
Figure 11:	Yearly average hydrogen demand curtailment rate at country or node level in the PCI/PMI hydrogen infrastructure level in 2030 for stressful weather year (unit: %)	40
Figure 12:	Distribution of hydrogen production via electrolysis in the Advanced hydrogen infrastructure level in 2030 for reference weather year (unit: GWh/y)	44
Figure 13:	Distribution of hydrogen production from natural gas in the advanced infrastructure level in 2030 for reference weather year (unit: GWh/y)	45
Figure 14:	Grid flows* in the advanced infrastructure level in 2030 for reference weather year (unit: GWh/y).	47
Figure 15:	Distribution of hydrogen production via electrolysis in the advanced infrastructure level in 2030 for stressful weather year (unit: GWh/y)	49
Figure 16:	Distribution of hydrogen production from natural gas in the Advanced hydrogen infrastructure level in 2030 for stressful weather year (unit: GWh/y).	50
Figure 17:	Grid flows in the Advanced hydrogen infrastructure level in 2030 for stressful weather year (GWh/y)	52
Figure 18:	Average of the hourly hydrogen market clearing prices per country in the Advanced hydrogen infrastructure level in 2030 (unit: €/MWh).	53
Figure 19:	Yearly average hydrogen demand curtailment rate at country or node level in the advanced infrastructure level in 2030 for reference year (unit: %).	55
Figure 20:	Yearly average hydrogen demand curtailment rate at country or node level in the advanced infrastructure level in 2030 for stressful weather year (unit: %)	58
Figure 21:	Shortage Advanced level and Shortage PCI/PMI level 2030 (unit: GWh/y)	66

Figure 22:	Electrolyser production Advanced level 2030 and PCI level 2030 (unit: GWh/y)	66
Figure 23:	Distribution of electrolytic hydrogen production per country in the PCI/PMI hydrogen infrastructure level in 2040 for reference weather year (unit: GWh/y)	69
Figure 24:	Distribution of hydrogen production from natural gas in the PCI/PMI hydrogen infrastructure level in 2040 for reference weather year (unit: GWh/y)	70
Figure 25:	Grid flows* in the PCI/PMI hydrogen infrastructure level in 2040 for reference weather year (unit: GWh/y)	72
Figure 26:	Distribution of hydrogen production via electrolysis in the PCI/PMI hydrogen infrastructure level in 2040 for stressful weather year (unit: GWh/y)	74
Figure 27:	Distribution of hydrogen production from natural gas in the PCI/PMI hydrogen infrastructure level in 2040 for stressful weather year (unit: GWh/y)	75
Figure 28:	Grid flows* in the PCI/PMI hydrogen infrastructure level in 2040 for stressful weather year (unit: GWh/y).	77
Figure 29:	Average of the hourly hydrogen market clearing prices per country in the PCI/PMI hydrogen infrastructure level in 2040 (unit: €/MWh).	78
Figure 30:	Yearly average hydrogen demand curtailment rate at country or node level in the PCI/PMI hydrogen infrastructure level in 2040 for reference year (unit: %)	82
Figure 31:	Yearly average hydrogen demand curtailment rate at country or node level in the PCI/PMI hydrogen infrastructure level in 2040 for stressful weather year (unit: %)	85
Figure 32:	Distribution of electrolytic hydrogen production in the Advanced hydrogen infrastructure level in 2040 for reference weather year (unit: GWh/y)	88
Figure 33:	Distribution of hydrogen production from natural gas in the Advanced hydrogen infrastructure level in 2040 for reference weather year (unit: GWh/y)	89
Figure 34:	Grid flows* in the Advanced hydrogen infrastructure level in 2040 for reference weather year (unit: GWh/y)	91
Figure 35:	Distribution of electrolytic hydrogen production from natural gas in the Advanced hydrogen infrastructure level in 2040 for stressful weather year (unit: GWh/y)	93
Figure 36:	Distribution of hydrogen production from natural gas in the advanced infrastructure level in 2040 for stressful weather year (unit: GWh/y)	94
Figure 37:	Grid flows* in the Advanced hydrogen infrastructure level in 2040 for stressful weather year (unit: GWh/y)	96
Figure 38:	Average of the hourly hydrogen market clearing prices per country in the Advanced hydrogen infrastructure level in 2040 (unit: €/MWh).	97
Figure 39:	Yearly average hydrogen demand curtailment rate at country or node level in the advanced hydrogen infrastructure level in 2040 for reference year (unit: %)	100
Figure 40:	Yearly average hydrogen demand curtailment rate at country or node level in the Advanced hydrogen infrastructure level in 2040 for stressful weather year (unit: %)	103
Figure 41: F	igure 21 Shortage Advanced level and Shortage PCI/PMI level 2040	110
Figure 42:	Figure 22 Electrolyser production Advanced level 2040 and PCI level 2040	110

LIST OF **TABLES**

Table 1:	Hydrogen storage capacities considered in the PCI/PMI hydrogen infrastructure level for the assessed years (unit: GWh/d for injection and withdrawal and GWh for working gas volume)	10
Table 2:	Extra-EU import capacities via pipelines considered in the PCI/PMI hydrogen infrastructure level and extra-EU supply potential for the assessed years (unit: GWh/d)	11
Table 3:	Extra-EU import capacities via terminals considered in the PCI/PMI hydrogen infrastructure level and extra-EU supply potential by ship for the assessed years (unit: GWh/d)	11
Table 4:	Hydrogen storage capacities considered in the Advanced hydrogen infrastructure level for the assessed years (units: GWh/d for injection and withdrawal and GWh for working gas volume)	14
Table 5:	Extra-EU import capacities via pipelines considered in the Advanced hydrogen infrastructure level and extra-EU supply potential for the assessed years (unit: GWh/d)	15
Table 6:	Extra-EU import capacities via terminals considered in the advanced hydrogen infrastructure level and extra-EU supply potential by ship for the assessed years (unit: GWh/d)	15
Table 7:	Supply and demand balance in the PCI/PMI hydrogen infrastructure level in 2030 for reference weather year (unit: TWh/y).	. 23
Table 8:	Distribution of hydrogen production, demand and hydrogen imports per country in the PCI/PMI hydrogen infrastructure level in 2030 for reference weather year (unit: GWh/y)	. 26
Table 9:	Supply and demand balance in the PCI/PMI hydrogen infrastructure level in 2030 for stressful weather year (unit: TWh/y)	. 28
Table 10:	Distribution of hydrogen production per country in the PCI/PMI hydrogen infrastructure level in 2030 for stressful weather year (unit: GWh/y).	31
Table 11:	List of borders in the PCI/PMI hydrogen infrastructure level that exceed (at least one of) the thresholds defined for IGI indicator 1 in 2030 (unit: days)	. 35
Table 12:	Yearly average hydrogen demand curtailment rate at country/sub-zone level in the PCI/PMI hydrogen infrastructure level in 2030 for reference weather year and check of the threshold of IGI indicator 2.1 (unit: %).	37
Table 13:	Yearly average hydrogen demand curtailment rate at country/sub-zone level in the PCI/PMI hydrogen infrastructure level in 2030 for stressful weather year and check of threshold 1 of IGI indicator 2.2 (unit: %).	41
Table 14:	Supply and demand balance in the Advanced hydrogen infrastructure level in 2030 for reference weather year (unit: TWh/y)	. 43
Table 15:	Distribution of hydrogen production, demand and hydrogen imports per country in the Advanced hydrogen infrastructure level in 2030 for reference weather year (unit: GWh/y).	. 46
Table 16:	Supply and demand balance in the advanced infrastructure level in 2030 for stressful weather year (unit: TWh/y)	. 48
Table 17:	Distribution of hydrogen production, demand and hydrogen imports per country in the Advanced hydrogen infrastructure level in 2030 for stressful weather year (unit: GWh/y)	51
Table 18:	List of borders in the advanced infrastructure level that exceed (at least one of) the thresholds defined for IGI indicator 1 in 2030 (unit: days)	. 54
Table 19:	Yearly average hydrogen demand curtailment rate at country/sub-zone level in the advanced infrastructure level in 2030 for reference weather year (unit: %)	. 56

Table 20:	Yearly average hydrogen demand curtailment rate at country/sub-zone level in the advanced infrastructure level in 2030 for stressful weather year (unit: %)	59
Table 21:	Maximum utilisation rates of interconnections in the PCI/PMI hydrogen infrastructure level and in the Advanced hydrogen infrastructure level in 2030 for the reference weather year (unit: %)	63
Table 22:	Maximum utilisation rates of interconnections in the PCI/PMI hydrogen infrastructure level and in the Advanced hydrogen infrastructure level in 2030 for the stressful weather year (unit: %)	65
Table 23:	Supply and demand balance in the PCI/PMI hydrogen infrastructure level in 2030 and 2040 for reference weather year (unit: TWh/y).	68
Table 24:	Distribution of hydrogen production, imported hydrogen and demand per country in the PCI/PMI hydrogen infrastructure level in 2040 for reference weather year (unit: GWh/y)	. 71
Table 25:	Supply and demand balance in the PCI/PMI hydrogen infrastructure level in 2030 and 2040 for stressful weather year (unit: TWh/y)	.73
Table 26:	Distribution of hydrogen production, imported hydrogen and demand per country in the PCI/PMI hydrogen infrastructure level in 2040 for stressful weather year (unit: GWh/y)	.76
Table 27:	List of borders in the PCI/PMI hydrogen infrastructure level that exceed (at least one of) the thresholds defined for IGI indicator 1 in 2040 (unit: days)	.81
Table 28:	Yearly average hydrogen demand curtailment rate at country/sub-zone level in the PCI/PMI hydrogen infrastructure level in 2040 for reference weather year (unit: %)	83
Table 29:	Yearly average hydrogen demand curtailment rate at country/sub-zone level in the PCI/PMI hydrogen infrastructure level in 2040 for stressful weather year (unit: %)	86
Table 30:	Supply and demand balance in the Advanced hydrogen infrastructure level in 2030 and 2040 for reference weather year (unit: TWh/y).	88
Table 31:	Distribution of hydrogen production, imported hydrogen and demand per country in the advanced hydrogen infrastructure level in 2040 for reference weather year (unit: GWh/y)	90
Table 32:	Supply and demand balance in the advanced infrastructure level in 2030 and 2040 for stressful weather year (unit: TWh/y)	92
Table 33:	Distribution of hydrogen production, imported hydrogen and demand per country in the Advanced hydrogen infrastructure level in 2040 for stressful weather year (unit: GWh/y)	95
Table 34:	List of borders in the advanced hydrogen infrastructure level that exceed (at least one of) the thresholds defined for IGI indicator 1 in 2040 (unit: days)	99
Table 35:	Yearly average hydrogen demand curtailment rate at country/sub-zone level in the Advanced hydrogen infrastructure level in 2040 for reference weather year and check of the threshold of IGI indicator 2.1 (unit: %).	101
Table 36:	Yearly average hydrogen demand curtailment rate at country/sub-zone level in the advanced infrastructure level in 2040 for stressful weather year and check of threshold 1 of IGI indicator 2.2 (unit: %)	104
Table 37:	Maximum utilisation rates of interconnections in the PCI/PMI hydrogen infrastructure level and in the Advanced hydrogen infrastructure level in 2040 for the reference weather year (unit: %).	107
Table 38:	Maximum utilisation rates of interconnections in the PCI/PMI hydrogen infrastructure level and in the Advanced hydrogen infrastructure level in 2040 for the stressful weather year (unit: %).	109

LIST OF ABBREVIATIONS

Annex C2 TYNDP 2024 Hydrogen Infrastructure Capacities

Annex D1 TYNDP 2024 Implementation Guidelines

Annex D2 TYNDP 2024 Hydrogen Infrastructure Gaps Identification

methodology

d Day

DGM Dual Hydrogen/Natural Gas Model or Dual Gas Model

DHEM Dual Hydrogen/Electricity Model

ENTSOG European Network of Transmission System Operators for Gas

ENTSO-E European Network of Transmission System Operators for

Electricity

EU European Union

ETS European Union Emissions Trading System

FEED Front-End Engineering Design

FID Final Investment Decision

GCV Gross Calorific Value or Higher Heating Value (25 °C/0 °C)

GWh Gigawatt Hour

HCR Hydrogen demand Curtailment Rate

H₂ Hydrogen

IGI Hydrogen Infrastructure Gaps Identification

IGI indicator 1 Hydrogen Infrastructure Gaps Identification indicator for

hydrogen market clearing price spreads

IGI indicator 2.1 Hydrogen Infrastructure Gaps Identification indicator for

hydrogen demand curtailment for reference weather year

IGI indicator 2.2 Hydrogen Infrastructure Gaps Identification indicator for

hydrogen demand curtailment for stressful weather year

IL Infrastructure Level

IoSN ENTSO-E's Identification of System Needs

MW Megawatt

MWh Megawatt Hour

NCV Net Calorific Value or Lower Heating Value (25 °C/0 °C)

NT+ TYNDP 2024 National Trends+ scenario

PCI Project of Common Interest

PMI Project of Mutual Interest

RES Renewable Energy Source(s)

TEN-E Regulation Regulation (EU) 2022/869

TWh Terawatt Hour

TYNDP Ten-Year Network Development Plan

Union list Union list of PCIs and PMIs

VolL Value of Lost Load

WTP_{H2} Willingness To Pay

y Year

COUNTRY CODES (ISO)

AL	Albania	LU	Luxembourg
AT	Austria	LV	Latvia
AZ	Azerbaijan	LY	Libya
BA	Bosnia and Herzegovina	MA	Morocco
BE	Belgium	ME	Montenegro
BG	Bulgaria	MK	North Macedonia
BY	Belarus	MT	Malta
СН	Switzerland	NL	Netherlands, the
CY	Cyprus	NO	Norway
CZ	Czech Republic	PL	Poland
DE	Germany	PT	Portugal
DK	Denmark	RO	Romania
DZ	Algeria	RS	Serbia
EE	Estonia	RU	Russia
ES	Spain	SE	Sweden
FI	Finland	SI	Slovenia
FR	France	SK	Slovakia
GR	Greece	TM	Turkmenistan
HR	Croatia	TN	Tunisia
HU	Hungary	TR	Turkey
IE	Ireland	UA	Ukraine
IT	Italy	UK	United Kingdom
LT	Lithuania		

LEGAL **DISCLAIMER**

The TYNDP was prepared by ENTSOG on the basis of information collected and compiled by ENTSOG from its members and from stakeholders, and on the basis of the methodology developed with the support of the stakeholders via public consultation. The TYNDP contains ENTSOG own assumptions and analysis based upon this information.

All content is provided "as is" without any warranty of any kind as to the completeness, accuracy, fitness for any particular purpose or any use of results based on this information and ENTSOG hereby expressly disclaims all warranties and representations, whether express or implied, including without limitation, warranties or representations of merchantability or fitness for a particular purpose. In particular, the capacity figures of the projects included in TYNDP are based on preliminary assumptions and cannot in any way be interpreted as recognition, by the TSOs concerned, of capacity availability.

ENTSOG is not liable for any consequence resulting from the reliance and/or the use of any information hereby provided, including, but not limited to, the data related to the monetisation of infrastructure impact.

The reader in its capacity as professional individual or entity shall be responsible for seeking to verify the accurate and relevant information needed for its own assessment and decision and shall be responsible for use of the document or any part of it for any purpose other than that for which it is intended.

In particular, the information hereby provided with specific reference to the Projects of Common Interest ("PCIs") and Projects of Mutual Interest ("PMIs") is not intended to evaluate individual impact of the PCIs and PMIs and PCI candidates and PMI candidates. For the relevant assessments in terms of value of each PCI and PMI the readers should refer to the information channels or qualified sources provided by law.

Publisher ENTSOG AISBL

Avenue de Cortenbergh 100 1000 Brussels, Belgium

Co-Authors Mads Boesen, Maria Castro, Arturo de Onis Romero-Requejo, Axelle de Cadier de

Veauce, Diana Fathelbajanova, Joan Frezouls, Alexander Kättlitz, Isabell Kolonko, Pierre Marani, Simona Marcu, Dante Powell, Rafail Tsalikoglou, Thilo von der Grün, Aisling Wall, Arnaud Weissrock, Kacper Zeromski, NeMo KG, INV WG, SCN WG.

Design DreiDreizehn GmbH, Berlin | www.313.de

ENTSOG AISBL Avenue de Cortenbergh 100 | 1000 Brussels, Belgium Tel. +32 2 894 51 00