

Mathematics of Gas Transport – Let's talk about data

Janina Zittel and the Energy Network Optimization Team Brussels, 21.11.2019

The Energy Network Optimization Team at ZIB

Thorsten Koch Janina Zittel Milena Petkovic Benjamin Hiller

Kai Hoppmann Felix Hennings Mark Turner Lovis Anderson

Kai-Helge Becker Stefan Klus Tom Streubel Ralf Lenz

Inci Yüksel-Ergün Carsten Dresske Katharina Pak Ying Wang

Solving problems of TSOs using mathematical optimization – our journey

With our Project Partners from Research and Industry

The ForNe

Team

With the industry partner Open Grid Europe GmbH, The research partners from WIAS Berlin, HU Berlin, TU Darmstadt, U Duisburg-Essen, FAU Erlangen-Nürnberg, Leibniz-U Hannover And the software companies atesio and develOPT

2nd Conference on Mathematics of Gas Transport With experts from industry and science

The plan4res Team

With the research partners from Electricitè de France, Cray Computer GbmH, RWTH Aachen, Imperial College London, Uni Pisa, Uni Modena e Reggio Emilia, Siemens AG

The MODAL GasLab team

With the industry partners from Open Grid Europe GmbH and Soptim

ForNe Nomination Validation

Given

- > a detailed description of a gas network
- > a nomination specifying amounts of gas
- flow at entries and exits

Find

- 1. settings for the active devices (valves, control valves, compressors)
- 2. values for the physical parameters of the network that comply with gas physics and legal and technical limitations
- ? How to decide whether a given nomination is technically feasible

То

EVALUATING GAS NETWORK CAPACITIES

? How to decide whether adding another capacity product delivers feasible nominations

- \succ with 6 periods for contracts
- ➤ to get 1,000 nominations each
- ➤ total of 120,000
- ➤ on a network of 4,000 arcs and
- ▶450 switching elements

and takes two weeks on a cluster of 256 cores, with < 1 h / nomination

EVALUATING GAS NETWORK CAPACITIES

Input Data - The GasLib Format

Network Topology - .net

```
<source geoWGS84Long="10.0667004121" alias="" y="6691.6" x="12108"
        geoWGS84Lat="48.448723929" id="source_1">
 <height unit="m" value="7"/>
 <pressureMin unit="bar" value="1.01325"/>
 <pressureMax unit="bar" value="121.01325"/>
 <flowMin unit="1000m_cube_per_hour" value="0"/>
 <flowMax unit="1000m_cube_per_hour" value="10000"/>
 <gasTemperature unit="Celsius" value="15"/>
 <calorificValue unit="MJ_per_m_cube" value="41.342270292"/>
 <normDensity unit="kg_per_m_cube" value="0.82"/>
 <coefficient-A-heatCapacity value="31.61010551"/>
 <coefficient-B-heatCapacity value="-0.004284754861"/>
 <coefficient-C-heatCapacity value="8.019089e-05"/>
 <molarMass unit="kg_per_kmol" value="18.0488790169"/>
 <pseudocriticalPressure unit="bar" value="46.7020607"/>
 <pseudocriticalTemperature unit="K" value="202.4395142"/>
</source>
<sink geoWGS84Long="10.0667004121" alias="" y="6794.3" x="12090"</pre>
     geoWGS84Lat="48.448723929" id="sink_1">
 <height unit="m" value="7"/>
 <pressureMin unit="bar" value="1.01325"/>
 <pressureMax unit="bar" value="121.01325"/>
 <flowMin unit="1000m_cube_per_hour" value="0"/>
 <flowMax unit="1000m_cube_per_hour" value="10000"/>
</sink>
<innode geoWGS84Long="7.92474003681" alias="" y="6324.6" x="5389.9"
       geoWGS84Lat="48.3578033109" id="innode_1">
 <height unit="m" value="77"/>
 <pressureMin unit="bar" value="2.01325"/>
 sureMax unit="bar" value="86.01325"/>
</innode>
```

Scenario - .scn

<node type="entry" id="source_1">
 <pressure unit="bar" bound="lower" value="2.0133"/>

```
sure unit="bar" bound="upper" value="86.013"/>
<flow unit="1000m_cube_per_hour" bound="both" value="472.636"/>
</node>
```

Compressor station data - .cs

10

6

Volumetric flow Q (m³ s⁻¹)

8

12

<source geoWGS84Long="10.0667004121" alias="" y="6691.6" x="12108"</pre>

geoWGS84Lat="48.448723929" id="source_1"> <height unit="m" value="7"/> <pressureMin unit="bar" value="1.01325"/> <pressureMax unit="bar" value="121.01325"/> <flowMin unit="1000m_cube_per_hour" value="0"/> <flowMax unit="1000m_cube_per_hour" value="10000"/> <gasTemperature unit="Celsius" value="15"/> <calorificValue unit="MJ_per_m_cube" value="41.342270292"/> <normDensity unit="kg_per_m_cube" value="0.82"/> <coefficient-A-heatCapacity value="31.61010551"/> <coefficient-B-heatCapacity value="-0.004284754861"/> <coefficient-C-heatCapacity value="8.019089e-05"/> <molarMass unit="kg_per_kmol" value="18.0488790169"/> <pseudocriticalPressure unit="bar" value="46.7020607"/> <pseudocriticalTemperature unit="K" value="202.4395142"/> </source>

<sink geoWGS84Long="10.0667004121" alias="" y="6794.3" x="12090"
geoWGS84Lat="48.448723929" id="sink_1">

<height unit="m" value="7"/>
<pressureMin unit="bar" value="1.01325"/>
<pressureMax unit="bar" value="121.01325"/>
<flowMin unit="1000m_cube_per_hour" value="0"/>
<flowMax unit="1000m_cube_per_hour" value="10000"/>
</sink>
<innode geoWGS84Long="7.92474003681" alias="" y="6324.6" x="5389.9"
 geoWGS84Lat="48.3578033109" id="innode_1">
<height unit="m" value="77"/>
<pressureMin unit="bar" value="2.01325"/>

Please checkout our website: <u>http://gaslib.zib.de</u> For a full documentation

Schmidt, M.; Aßmann, D.; Burlacu, R.; Humpola, J.; Joormann, I.; Kanelakis, N.; Koch, T.; Oucherif, D.; Pfetsch, M.E.; Schewe, L.; Schwarz, R.; Sirvent, M. GasLib—A Library of Gas Network Instances. Data 2017, 2, 40.

change H_{ad} (kJ kg⁻¹)

Enthalpy

30

20

10

C

Û.

GasLab

Building the future decision support system for nationwide gas transmission system operations

From

- Network evaluation / control operation is based on individual experiences
- Variety of historically learned control options
- Predictive control required due to network inertia

To

- Specific, standardized recommendations for network operations
 - Modern forecasting and optimization methods allow a predictive and stable network operation that detects and prevents the occurrence of problems

The MODAL GasLab – The Approach

The three types of analytics for a foresighted decision support system for gas grid operation

 Descriptive analytics: modeling and simulating the gas flow in the network

• **Predictive** analytics: predicting future gas supply and demand at the entries and exits of the network

• **Prescriptive** analytics: recommending network control measures to ensure safe and efficient operation of the network.

Components of the GasLab Solution

Data

- 1 Transmission System Operator
- Interfaces to several source systems
 - measurements
 - simulations
 - nominations
 - state of active elements
 - maintenance schedules
 - • •
- 2 **tailored models** for the individual **stations** (a coarse model and a detailed model)

Gas Network Modelling in planares

Plan4res – Data

- Public Data Sources
 - TSO Transparency Platforms, TSO Web Sites; Organizations, i.e., ENTSOG, GIE, GSE, FNB; Bidding platforms, i.e., PRISMA; Open dataset provided by Electricity, Heat, and Gas Sector Data for Modeling the German System Project^[1]
- Nominations
 - Electricity induced supply and demand: supply from P2G, demand of GPPs
 - Non-electricity induced supply and demand: Imported gas, gas from storages, LNG, production, cross-border demand, household usage, industry
- Gas Network Description
 - Nodes: X,Y, height, types, flow bounds
 - Pipelines: End nodes, length, diameter, roughness Control valves: End nodes, other technical data
 - Compressor stat.: End nodes, other technical data

^[1] Kunz, F. ; Weibezahn, J.; Hauser, P.; Heidari, S.; Schill, W.-P.; Felten, B.; Weber, C. (2017). **Reference Data Set: Electricity, Heat, and Gas Sector Data for Modeling the German System (Version 1.0.0)** [Data set]. Zenodo. http://doi.org/10.5281/zenodo.1044463

But software solutions for Europe need open data for Europe

Carvalho, Rui et al. (2009). **Robustness of Trans-European Gas Networks**. *Physical Review E 80.1*

Ongoing project at DLR Institute for Networked Energy Systems – that aims to deliver a European data set for scientific purposes funded by the German Ministry of Economic Affairs and Energy

We could do so much more, if only ...

Data available at TSOs, DSOs and organizations like ENTSOG

could be shared **open access** (for academic purposes)

Screenshot of https://www.entsog.eu/sites/default/files/2018-12/ENTSOG_GIE_SYSDEV_2017-2018_1600x1200_FULL.pdf ENTSOG

