Ten-Year Network Development Plan 2018
Presentation day
21 March 2019 – Brussels
Louis Watine – Deputy Manager, System Development
Stefano Astorri – Investment Subject Manager, System Development
Cihan Soenmez – Scenario Subject Manager, System Development
1. Role of TYNDP
2. ENTSOG and ENTSO-E TYNDP 2018 scenarios
3. Assessing the needs for the future
4. Achieving the internal gas market is at hand
Role of TYNDP
Planning the future energy system
3rd Package regulatory framework for Gas

Directive 2009/73/EC

Unbundling – separation of transmission from supply to customers

Regulation EC No 715/2009 (or “Gas Regulation”)

ENTSOG

European Network of Transmission Operators for Gas

Regulation EC No 714/2009

ACER

Agency for the Co-operation of European Energy Regulators
TYNDP: an ENTSOG regulatory task

TYNDP is developed bi-annually

> Task defined by Reg. (EU) 715, Reg. (EU) 347 and Reg. (EU) 2015/703

> European Commission approved the Cost-Benefit Analysis Methodology applied to TYNDP

> ACER monitors TYNDP and issues a formal Opinion on TYNDP
Role of TYNDP

TYNDP

Frame possible futures

Assess the infrastructure for secure, competitive and sustainable gas supply to EU consumers: Further infra needs?

Assess projects as a whole: Do they mitigate the infrastructure needs?

Stakeholder engagement

ACER and European Commission
EU TYNDP is built on **TEN-E Regulation** and plays a role as a starting point in the wider process of **PCIs selection**, managed by the European Commission and Regional Groups.

Every two years ENTSOG (together with ENTSO-E) **plan, assess and test** the infrastructure against possible future scenarios to **secure energy demand** for the next decades. TYNDP is a **highly inclusive** and **transparent** process, building on input from numerous stakeholders.
TYNDP process

Scenario Report
Frame the future of the energy sector
In collaboration with ENTSOE

TYNDP Report
Assess Infrastructure needs

Project Fiches
Assess Projects

New
TYNDP 2018 timeline

Timeline

- **MAR ‘16**
 - Public consultation
 - Submission of projects in TYNDP
 - ENTSoE and ENTSoG joint Scenario Development

- **DEC ‘16**
 - Gas 2nd CBA methodology
 - Promoters to submit their projects to TYNDP and submissions to be verified against TYNDP Guidelines

- **DEC ‘17**
 - Sytem & needs assessment
 -Projects assessment (*)

- **JUL ‘18**
 - Draft TYNDP report
 - Draft TYNDP reporting EU-wide infrastructure gaps

- **DEC ‘18**
 - Final report including P-S CBA for intended PCI applicants

- **JUL ‘19**
 - Final TYNDP report

Notes

- (*) Dependant on CBA 2.0
- Public workshop, webinar, SJWS or Prime Mover WS
- Consultation with the member states

TYNDP is a highly inclusive and transparent process
TYNDP 2018 Report Main elements

- Demand Scenarios
- Supply Scenarios
- Infrastructure data & Map
- CBA 2.0
- Infrastructure gaps
- System Assessment
- PS-CBA
- Project Fiche

Part of TYNDP 2018
Version 2.0 applied to TYNDP 2018
2nd ENTSOG CBA Methodology

Main improvements:

- more streamlined methodology
- increased transparency
- refined supply and supply price methodology
- refined market modelling assumptions
- indicators simplification
- project grouping guidelines
- compulsory cost provision
- improved sensitivity analysis

Approved by EC in January 2019
Joint ENTSOs TYNDP scenarios

TYNDP 2018 scenarios built in a consistent and comprehensive way by ENTSOG and ENTSO-E

> The expertise of gas and electricity TSOs also ensures that the scenarios are broadly technically feasible; for instance, making it possible to maintain the energy balance at all time in each country.

> This is key to test the need and performance of possible future infrastructure in challenging but realistic situations.
Joint ENTSOs TYNDP scenarios

from TYNDP 2017....

... to TYNDP 2018

Common scenarios ensure consistent assessment of System needs and Infrastructure Projects
Scenarios frame the possible futures

Stakeholder feedback supported a range of demand scenarios

> Scenarios are not forecasts, not visions
Scenarios Characteristics

EUCO 30: Models the achievement of the 2030 climate and energy targets as agreed by the European Council in 2014, but including an energy efficiency target of 30%.

Sustainable Transition: Targets reached through national regulation, emission trading schemes and subsidies, maximising the use of existing infrastructure.

Distributed Generation: Prosumers at the centre – small-scale generation, batteries and fuel switching society engaged and empowered.

Global Climate Action: Full speed global decarbonisation, large-scale renewables development in both electricity and gas sectors.
CO₂ reduction: meeting EU targets

Gas displacing coal for power generation significantly reduces CO₂ emissions in 2025.

All scenarios have been built as realistic and technically sound, aiming at reducing emissions by 80 to 95% in line with EU targets for 2050.
Multiple energy mixes achieve the EU Energy efficiency target

The target can be met both with...

...Decreasing gas demand

> Better efficiency of gas heating
> Electrification of heating

...Increasing gas demand

> More efficient gas-fired generation replacing coal generation
> Gas mobility displacing oil demand
> Highly efficient gas condensing boilers
Gas demand in 2030 and 2040 in line with external scenarios

ENTSOs Scenarios within the range of IEA scenarios (WEO 2018)
TYNDP scenarios since 2011

TYNDP 2017 scenarios were considering lower demand for 2017 than actually observed.

EU Energy consumption

Fuel switch since 2014: Solid decreasing, gas increasing

Gas provides >20% EU Energy Consumption

Heating and cooling is 50% EU Final Energy Demand, significantly covered by Gas

Source: Eurostat
Gas and electricity demand in TYNDP 18

ENTSOs interlinked model

- Energy demand for Europe until 2040
- Gas to power demand stemming from power generation mix
- Coordinated approach on heating and transport sectors

Decarbonisation and energy efficiency reshape energy demand
Gas plays an essential role in decarbonisation
Gas demand decrease in some scenarios, natural gas partially compensated by renewable gas
Gas system to cope with seasonality

Gas and Electricity consumption

Seasonal Gas Demand

> Gas demand in TYNDP 2018

Gas system to ensure the seasonal supply and demand adequacy
Climatic stress - gas consumption

Demand during cold spells does not follow annual volume trends. The gas infrastructure is designed to cope with peak demand situations.

Gas peak demand TYNDP 2018

Peak demand is a key element of infrastructure design. Gas peak demand is mostly maintained over time, especially for power generation.
Decarbonisation of gas supply

Percentage share of green gas supplying total gas demand by scenario

Different scenarios considering different levels of renewable gas penetration

Gas infrastructure can further support CO$_2$ reduction and integration of renewable and decarbonised gases
Supply needs over time

Renewable gases can compensate the decline of the EU indigenous production depending on the scenarios

In the different scenarios, import needs remain significant

Maximum imports potential

Minimum imports potential

Access to new supply sources – indigenous or extra-EU - would contribute to maintain supply diversification and flexibility
OUTLOOK: TYNDP 2020 SCENARIOS

ENTSOG & ENTSO-E ARE CURRENTLY DEVELOPING 2020 SCENARIOS:

> 1 bottom-up scenario in compliance with National Energy and Climate Plans
> 2 top-down Full-energy scenarios compliant with the targets of the Paris Agreement
> Key aspects:
 ▪ Decarbonisation
 ▪ Centralization/de-centralization
 ▪ Deep investigation of decarbonisation of gas supply: Biomethane, P2G, Blue Hydrogen

NEXT EVENTS:
> 18.04.2019: Webinar on Storyline Release
> Beginning of July: Publication of draft Scenario Report

We need and appreciate your contribution. Please contact sysdev@entsog.eu and sign in ENTSOG’s TYNDP distribution list to receive the latest info and invitations to our events
TYNDP 2018 Assessment
Assessing the needs for the future
The existing infrastructure

At EU level

> Diversified pipeline imports
> A well-developed transmission network
> LNG terminals all around Europe
> Underground storages in most EU countries
Highly resilient existing gas infrastructure

1 100 TWh
High storage capacity
20% of the annual demand

800 GW
High storage deliverability
Key asset to cover winter demand and to provide flexibility

850 GW
High import capacities
What the EU gas infrastructure already achieves

Security of supply
- Resilience to extreme temperature
- Resilience to many supply and infrastructure disruptions

Market integration and competition
- Most of Europe has access to diversified supply sources
- Hub prices converge most of the time – especially in Western Europe

Sustainability
- The existing EU gas infrastructure is generally already able to contribute to significant CO\(_2\) reduction and to complement renewable generation and integrate renewable gases

In specific areas further infrastructure needs remain
Needs assessment methodology
Is further infrastructure needed?

TYNDP assesses the gas infrastructure against the Union energy policies

Are they achieved with the existing infrastructure and FID projects?

- Yes
- No

No further infrastructure needs

TYNDP assesses further infrastructure development
- FID projects + advanced projects
- FID projects + 3rd PCI list projects
Low Infrastructure level

Reference infrastructure development for identification of infrastructure gaps:

> Existing infrastructure

+

> Projects having made their Final Investment Decision (FID projects)
Advanced Infrastructure level

Advanced infrastructure level is considered to assess the impact of

> Existing infrastructure

> Projects having made their Final Investment Decision (FID projects)

> Projects to be commissioned by 2024 having initiated their permitting process or FEED studies (or having been granted CEF funding for FEED)
PCI Infrastructure level

PCI infrastructure level is considered to assess the impact of

- Existing infrastructure

 +

- Projects having made their Final Investment Decision (FID projects)

 +

- Additional projects of the 3rd PCI list not having made their FID yet
ENTSOG EU network modelling

ENTSOG European model builds on TSOs national expertise
Sustainability
Reaching EU’s climate targets with the gas infrastructure

Hybrid system allows significant CO2 reductions at low cost

Gas infrastructure can cope with increasing shares of renewable gas

Additional infrastructure could further support renewable gas integration and CO2 reduction

mt CO2 equivalent

- 1990
- 2020
- 2025 CBG
- 2025 GBC
- ST 2030
- DG 2030
- EUCO 2030
- ST 2040
- DG 2040
- GCA 2040

- 40% Reduction
- 60% Reduction
- 80% Reduction

39
Sustainability

Developing and integrating **renewable sources of energy** further contributes to a low-carbon future

> Today’s EU gas infrastructure - with existing power plants - is already able to complement and **support renewable electricity generation and integrate renewable gases.**

It is fundamental to take a holistic approach to the energy system
Security of Supply
Security of Supply

Assessment of the resilience of the European gas system to cope with various stressful events

> Climatic stress
 - Peak day demand
 - 2-week cold spell

> Supply route disruptions in case of climatic stress*
 1. Ukraine route
 2. Belarus route
 3. Imports to Baltic states and Finland
 4. Algerian import pipelines

> Infrastructure disruption
 - Single Largest Infrastructure disruption of each country, during a peak day

Results generally shown for peak day unless specified differently

*B Based on risk groups defined by SoS regulation 2017/1938 (Annex I)
Climatic stress

Assessment of 1-in-20 peak day and 1-in-20 2-week cold spell

> The European gas system is resilient to extreme climatic stresses in all scenarios (1-in-20 peak day and 1-in-20 2-week cold spell)

> Exposure to demand curtailment is limited to Croatia in all scenarios (and to North-Macedonia in some instances)
Resilience to supply route disruptions in climatic stress conditions

Disruptions scenarios defined in SoS regulation 2017/1938
Ukraine transit route disruption

Peak day conditions

2020

FID projects mitigate the situation in 2020

However, some remaining gaps are identified after 2020...

FID projects

ST 2030 DG FID projects

1 100 GWh

ST 2040 DG / GCA FID projects

1 100 GWh

Remaining Flexibility

Share of Curtailment

0%-15% > 15% 0%-15% 15%-30% 30%-50% > 50%
Ukraine transit route disruption

2025 BEST ESTIMATE (Gas before Coal)

2030 SUSTAINABLE TRANSITION

2040 SUSTAINABLE TRANSITION

Advanced projects mitigate the situation after 2020 in all scenarios

FID + Advanced projects
Belarus disruption

Peak day conditions

Most of European gas system is resilient

FID projects

Lithuania and Poland can be exposed in the longer term
Belarus disruption

Advanced projects mitigate the situation after 2020 in all scenarios
Baltic States and Finland disruption

Peak day conditions

Finland and Estonia exposed to demand curtailment in all scenarios

FID projects

2020 BEST ESTIMATE

2030 DISTRIBUTED GENERATION

2040

DG / GCA

Remaining Flexibility | Share of Curtailment
0%-15% > 15%
0%-15% 15%-30% 30%-50% > 50%
Advanced projects mitigate the situation for Estonia after 2020 in all scenarios, but Finland remains exposed to significant demand curtailment.
Algeria pipeline imports disruption

Peak day conditions

Iberian peninsula is exposed to limited demand curtailment (≤10%) in all scenarios

> in ST 2040, the exposure to demand curtailment is higher (20%), showing a potential infrastructure bottleneck.

FID projects
Advanced projects mitigate the situation for Iberian peninsula after 2020 in all scenarios but Sustainable transition in 2040.
Countries at the border of the EU with limited interconnections to neighbouring countries rely on their largest infrastructure to satisfy their demand.

South-Eastern Europe is also exposed in the shorter term.

In ST (2030-2040), SLI disruption in Slovakia can expose Europe to an overall gas shortage (~400 GWh on a peak day).
Single Largest Infrastructure Disruption

Maximum exposure to demand curtailment in case of disruption of a Single Largest Infrastructure

Advanced projects mitigate the situation in South-Eastern Europe as of 2025 in all scenarios

FID + Advanced projects
Adaptation of L-gas to H-gas

Netherlands, Germany, Belgium and France markets are partly supplied with L-gas

> Starting from 2020, part of the local gas demand in *BE, FR* and *DE* will be converted from L-gas to H-gas

> L-H gas conversion is already considered in the Low Infrastructure assessment

> ENTSOG has run PS-CBAs for L-H gas conversion projects in Belgium and France
Security of Supply – Supply flexibility

Low infrastructure level ensures the necessary flexibility to cope with a peak day

> Gas storages and LNG terminals provide most of the extra supply flexibility
Security of supply

Already achieved

> Resilience to climatic stresses (1-in-20 conditions)
> Resilience to a large number of supply and infrastructure disruptions

Further infrastructure needs

> Mitigating the impact of Ukraine route disruption in South-Eastern Europe
> Mitigating the impact of Belarus route and Russian imports disruption in North-Eastern Europe
> To mitigate impact of national largest infrastructures disruptions in specific countries
Competition & Market Integration
Market modelling assumptions

Supply prices

> The range of each supply is depending on the entry costs to EU and shipping cost for LNG

> Differentiated supply prices embedded in the reference price configuration

Example of the merit order of the supply sources in the Reference case (Japan reference price purely indicative)

> Russia maximisation
> Russia minimisation
> LNG maximisation
> LNG minimisation
> South gas supply maximisation

Note: Supply assumptions consulted with stakeholders on 13 February 2018 working session on modelling and market related assumptions
Market layer
Infrastructure tariffs

Interconnections
LNG Terminals
Storages

Marginal Prices considering infrastructure costs

Supply Source Access and Marginal Prices

+ 200,000 MW
+ 160,000 MW
+ 150,000 MW
+ 100,000 MW
Supply Source “commercial” Access

> **Supply Source Access indicator (SSA)** measures the number of supply sources an area can access.

> This supply source diversification ability is calculated from a market perspective, as the ability of each area to benefit from a decrease in the price of the considered supply source (*such ability does not necessarily mean that the area has a physical access to the source*).

> Tariffs pancaking effect allows for more realistic source spread among countries.

> SSA indicates the number of sources for which a *decrease in price can benefit to more than 20% of the demand* of a country.
Most countries access 3 sources but several areas have a significant access to only 1 or 2 supply sources.
Advanced projects ensure access to 3 and more sources to almost all of the EU in 2030 except for Greece and the Iberian peninsula in some scenarios.
Competition – Supply Source Dependence

> **Supply Source Dependence (SSD)** measures the Unreducible share of this source necessary for a country to cover its demand on a yearly basis.

> Under **cooperative behavior**: countries will align their dependence level as long as infrastructures allow for it.
 - Countries will align their minimum source share if infrastructure allows for it.
 - **Non-alignment** between countries indicate an **infrastructure bottleneck**.

> Dependence > 25% indicates that at least one quarter of the demand need to be supplied from this source.
Supply Source Dependence

- Europe relies on a minimum share of Russian gas to achieve its supply and demand adequacy in 2020 and 2025.
Supply needs over time

Access to new supply sources – indigenous or extra-EU - would contribute to maintain supply diversification and flexibility and supply dependence limited.

Maximum imports potential

Minimum imports potential
The gas system allows for efficient cooperation between countries so that most of them can share the same dependence.

Eastern Europe has limited alternative to Russian supply.
Advanced projects ensure cooperation for all Europe to share the same level of dependence from 2025 onwards.
The gas system allows for efficient cooperation between countries in all Europe.

Iberian peninsula has limited alternative to LNG supply.
Advanced projects reduce the dependence of the Iberian peninsula to LNG supply, especially in 2025.
LICD focuses on connections to the EU market

LICD is an HHI indicator

- The lower the more diversified
- Geographical location related:
 - Countries with 2 borders cannot score below 5000
 - Countries with 3 borders cannot score below 3333

- Most European countries have an indicator below 5 000
- Countries with a limited number of borders have a LICD higher than 5 000.
- Advanced projects improve the situation in South-Eastern Europe, Ireland, Denmark and Sweden

FID projects

FID + Advanced projects
Supply mix

The Low infrastructure level allows Europe to access the maximum potential of each supply source

> Some projects bring access to new supply sources or increase the potential of existing sources
Price convergence

Russian supply price sensitivity

FID projects

Low price

High price

FID + Advanced projects
Price convergence

Russian supply price sensitivity

- All Europe can benefit from low Russian price
- Eastern-Europe generally well connected to Russian supply but limited diversification exposed Eastern Europe to high Russian price

FID projects
FID + Advanced projects
Price convergence

Russian supply price sensitivity

All Europe can benefit from low Russian price

Eastern-Europe generally well connected to Russian supply but limited diversification exposed Eastern-Europe to high Russian price

Low price

<table>
<thead>
<tr>
<th></th>
<th>Gas before Coal 2025</th>
<th>DG 2030</th>
<th>EUCO 30 2040</th>
<th>ST 2040</th>
<th>DG 2030</th>
<th>GCA 2040</th>
<th>ST 2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>RU max Low</td>
<td>![Graph](RU max Low)</td>
</tr>
<tr>
<td>RU max Advanced</td>
<td>![Graph](RU max Advanced)</td>
</tr>
</tbody>
</table>

High price

<table>
<thead>
<tr>
<th></th>
<th>Gas before Coal 2025</th>
<th>DG 2030</th>
<th>EUCO 30 2040</th>
<th>ST 2040</th>
<th>DG 2030</th>
<th>GCA 2040</th>
<th>ST 2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>RU max Low</td>
<td>![Graph](RU max Low)</td>
</tr>
<tr>
<td>RU max Advanced</td>
<td>![Graph](RU max Advanced)</td>
</tr>
</tbody>
</table>

Advanced projects improve price convergence in all scenarios
Price convergence

LNG supply price sensitivity

FID projects
Price convergence

Most of Europe can benefit from low LNG price, with some limitations in Eastern Europe.

High LNG price is generally impacting all Europe with a higher exposure in Western Europe.
Price convergence

Most of Europe can benefit from low LNG price, with some limitations in Eastern Europe

High LNG price is generally impacting all Europe with a higher exposure in Western Europe

Advanced projects improve price convergence in all scenarios
Competition & Market Integration

Already achieved

> Most of Europe can access diversified supply sources
> The infrastructure allows for efficient cooperation between countries showing low level of dependence on LNG and Russian supply
> Infrastructure allows for hub price convergence, especially in Western Europe
> Most countries have balanced entry capacities in comparison to their geographical location

Further infrastructure needs

> To ensure more diversified access to supply sources – in the Baltics, South-East Europe and Iberian Peninsula
> To lift high dependence to a specific supply source
Achieving the internal gas market is at hand
Projects overview

The necessary projects are to be commissioned in the coming years

80% of FID and Advanced projects are expected to be commissioned by 2022

Large-scale import projects
Conclusion

Assessing infrastructure needs for the future requires energy scenarios covering the range of possible futures

The gas infrastructure is already well developed and
- Close to achieving the EU internal gas market
- Ready to further support a low-carbon future

The energy situation is not the same all over Europe
- In specific areas, further infrastructure is still needed
- The necessary projects are to be commissioned in the coming years
Conclusion

- **Stakeholder are welcome to take part to the TYNDP public consultation (until 29 March).**

 https://www.surveymonkey.com/r/VDQDHD2

- **More on TYNDP 2018:**

Have your say!
On the way to TYNDP 2020
TYNDP 2020

May – June 2019

TYNDP 2020 Project collection

Open to renewable and decarbonisation projects

Summer 2019

> Publication and public consultation

TYNDP 2020 draft scenario report

• 3 scenarios
• Carbon budget approach towards 2050
• Holistic approach to the energy system
Thank You for Your Attention

Louis Watine –, Deputy Manager, System Development
Stefano Astorri – Investment Subject Manager, System Development
Cihan Soenmez – Scenario Subject Manager, System Development

ENTSOG -- European Network of Transmission System Operators for Gas
Avenue de Cortenbergh 100, B-1000 Brussels

EML: Louis.watine@entsog.eu, stefano.astorri@entsog.eu, cihan.soenmez@entsog.eu
WWW: www.entsog.eu