

WELCOME

INTRODUCTION

Moderator: Sonja van Renssen, Energy Post

INTRODUCTION

Host: Stephan Kamphues, President ENTSOG

INTRODUCTION

Video message by Jerzy Buzek, Chair or the ITRE Committee, Member of the European Parliament

PROGRAMME

TIME:	AGENDA:
15:00-15:10	Welcome by Sonja van Renssen & Stephan Kamphues
15:10-16:30	Panel 1 – Sector coupling – how to make it work?
16:30-17:00	Coffee Break
17:00-17:20	Panel 2 – Decarbonise and innovate with gas
18:20-18:30	Wrap up of the day by Jan Ingwersen
18:30-21:00	Walking dinner, drinks & networking

WIFI & TWITTER

Wifi network: Event – Bibliothèque Solvay

Password: 80297-26185

TWITTER: #ENTSOGconf2018

SLIDO INSTRUCTIONS

- 1. Open browser (e.g. Internet Explorer, Google Chrome, etc.)
- 2. Go to www.Slido.com
- 3. Enter event code ENTSOG2018
- 4. Type your question
- 5. Type your name
- 6. Press 'send'

Please note:

Messages may take a few seconds to appear on the screens in the room. Click to add text.

Panel 1: Sector coupling – how to make it work?

Project Presenters:

Bart Jan Hoevers, GTS

Ben Voorhorst, TenneT

Jörg Bergmann, Open Grid Europe

Panelists:

Florian Ermacora, European Commission

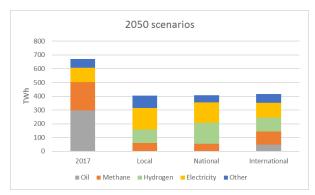
Bente Hagem, ENTSOE

Andris Piebalgs, FSR

Giles Dickson, WindEurope

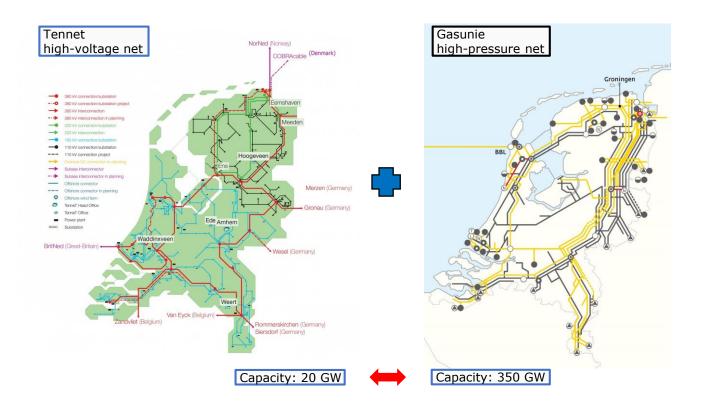
Marion Labatut, Eurelectric

Infrastructure Outlook 2050

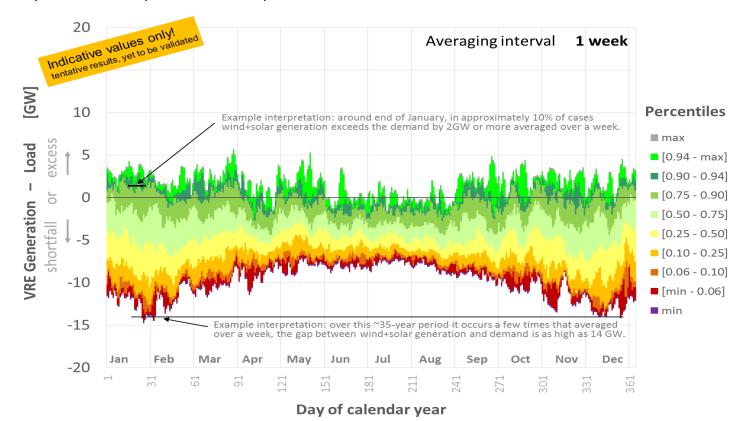

An analysis of transport and storage of electricity, hydrogen and methane in a future (Paris compliant) integrated energy system in the Netherlands

Ben Voorhorst & Bart Jan Hoevers

Outlook 2050 scenarios

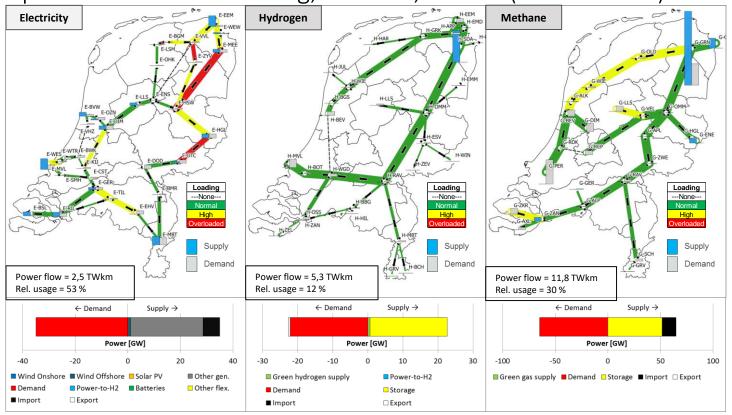

	Regional management	National management	International	Generic direction
Power and light	25% seduction minimum demand more efficient equipment. Furthermose a strong electrification industry.		25% reduction due to efficient equipment	25% reduction due to efficient equipment
Low temperature heat*	Many heat networks and all-electric. (Limbing green gas, no H _e distribution). Reduction 23%	Many hybrid heat pumps on H ₂ (and green gas) (Limiting on green gas). Reduction 16%	Many hybrid heat jumps on green gas and hydrogen (mild limiting of green gas) Reduction 12%	Mix of individual options (no large collective, no other limitations) Reduction 17%
High temperature & feedstock industry**	Circular industry and ambitious process innovation: 60% selection; 55% electrification; CO ₂ -emission-97%.		Biomass-based industry and CCS: 55% reduction; 35% biomass; 14% electrification; CO ₂ emission-95%	Gradual development, business as usual and CCS: 20% reduction; 12% electrification; CO ₂ emission -85%.
Transport for people	100% electric	75% electric, 25% H ₃ fuel cell	50% electric; 25% green gas; 25% H ₂	50% electric; 25% green gas; 25% H ₂
Transport of goods	SD% green gas; SD% H ₂		25% biomass; 25% green gas; 50% H ₂	
Renewable generated in HL	84 GW solar 16 GW anshare wind 26 GW affshare wind	34 GW solar 14 GW onshorewind 53 GW offshorewind	16 GW solar 5 GW anshare wind 6 GW affshare wind	18 GW solar 5 GW anshore wind 5 GW affshare wind
Conversion and storage in ML	75 GW electrolysis 60 GW battery stored 9 bcm gas buffer	60 GW electrolysis 50 GW battery stored 11 bcm gas buffer	2 GW electrolysis 5 GW battery stored 10 bcm gas buffer	0 GW electrolysis 2 GW battery stored 10 bcm gas buffer

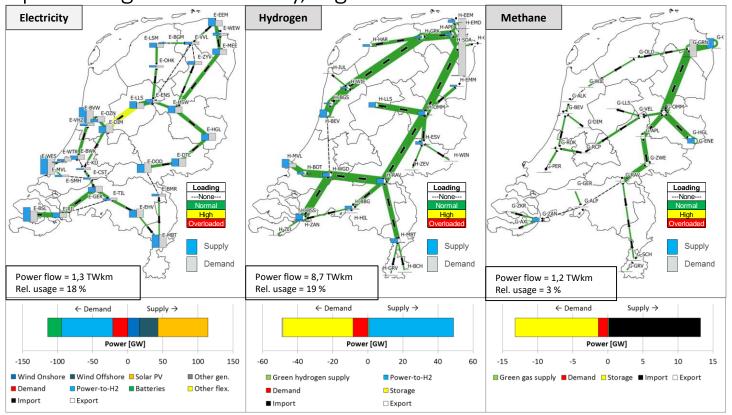
* Results cost effective option calculations made with the CEBOIA-model.** Future scenarios for the industry from the Wappertal Institute.

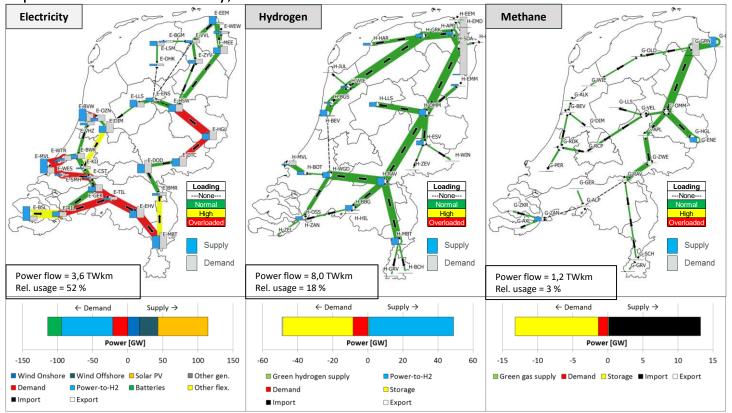


Outlook 2050: merging two national networks

Variability of residual load – Netherlands 2030


Sometimes weeks occur with a gap exceeding 10 GW between wind and solar generation and load. Also, a week with a few GW excess VRE generation can occur. In extreme years multi-week periods occur in which wind and solar generation only cover a small part of electricity demand


Example 1: cold winter evening, no wind, no sun (dunkelflaute)


Example 2: bright summer day, high winds

Example 3: summer day, P2G near market

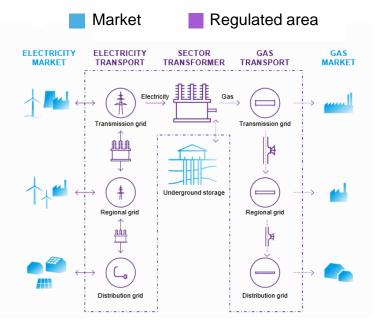
Conclusions

- 1. All scenarios show that not only the electricity, but also the existing gas transport infrastructure will play a crucial role in the energy transition

 Significant share of RES will be wind and solar and there the primary carrier is electricity. Part of this energy will be used as molecules in industry (HT/LT heat and feedstock), space heating in built environment, mobility and power generation. The existing gas infrastructure has sufficient capacity for both green methane and hydrogen transport
- 2. Although additional electricity storage will be available by 2050 only gas storage provides a solution for seasonal storage

 Storage requirements exceed the quantities that can be provided with battery storage
- 3. Location, capacity and operation of P2G-installations are decisive factors and must be aligned with both electricity and gas TSOs

 Conversion of P2G (electrolysis) close to supply and G2P (power generation) close to the market relieves the electricity network
- 4. It is recommended that the investment plan processes for TSOs use the results of this study as guidance when considering alternative investment proposals on the shorter term

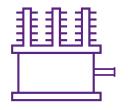

JÖRG BERGMANN, OPEN GRID EUROPE, GERALD KAENDLER, AMPRION

12TH DECEMBER 2018, BRUSSELS

POWER TO GAS PLANTS AS SECTOR TRANSFORMERS

Sector coupling on TSO level will create maximum economic benefit and sustainability

- Right size: Power-to-gas plants must be integrated in appropriate dimensions and at highest system level to make transport capacity of transmission systems and gas storage usable
- Right location: Installation of PtG plants at appropriate connection points between power and gas transmission systems
- Right timing: Through coordinated operation of the PtG plant the flows in the gas and the power transmission grid are considered as an integrated system


 Right frame: For systemic sector coupling gas and power TSO should be able to offer capacity to simultaneously convert power to gas in a non-discriminatory way

NEW TSO ENERGY CONVERSION INFRASTRUCTURE

SECTOR TRANSFORMER

Sector transformer fits into the regulatory framework

- New tool to couple power and gas infrastructure
- Unbundling maintained: TSO neither buy power nor sell gas
- Non-discriminatory third-party access: Auctioning of the capacities
- New business models for traders available
- PtG = Essential Facilities: TSO fulfill respective unbundling rules, others do not

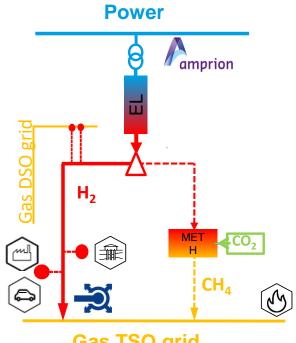
Auction mechanism for conversion capacity

- Auction similar to disposal of EU transmission rights and capacities
- Comparable to Joint Allocation Office (JAO) and PRISMA

Further advantages

- For H2 customers accessible infrastructure
- No new apportionment mechanism

- Scalable PtG capacity build-up
- We can start today!



HYDROGEN INFRASTRUCTURE IN NORTHERN GERMANY

- 100 MW electrolyser near offshore connection point
- Pipeline refitted for transport of pure hydrogen connecting Lower Saxony with North Rhine-Westphalia
- Hydrogen consumer within 10km distance
 - Industry: chemical industries, refineries
 - Storage: repurposed underground storages
 - Distribution grids: Hydrogen blending
 - Mobility sector: hydrogen stations, trains
- Partial methanation with injection into the natural gas grid
- Total investment: € 150 million
- Commissioning: 2023

Decisive factor: NRA's support

Panel 1: Sector coupling – how to make it work?

What could a Hybrid Energy System bring to the EU?

Electricity and gas synergies - which ones and how to achieve them?

How can business cases for P2G develop?

How to connect and digitalise the electricity and gas markets?

What's in it for the consumers?

SLIDO INSTRUCTIONS

- 1. Open browser (e.g. Internet Explorer, Google Chrome, etc.)
- 2. Go to www.Slido.com
- 3. Enter event code ENTSOG2018
- 4. Type your question
- 5. Type your name
- 6. Press 'send'

Please note:

Messages may take a few seconds to appear on the screens in the room. Click to add text.

WRAP UP

Moderator: Sonja van Renssen, Energy Post

COFFEE BREAK

16:30-17:00

Panel 2: Decarbonise and innovate with gas

Project Presenters:

Thierry Trouvé, GRTGaz

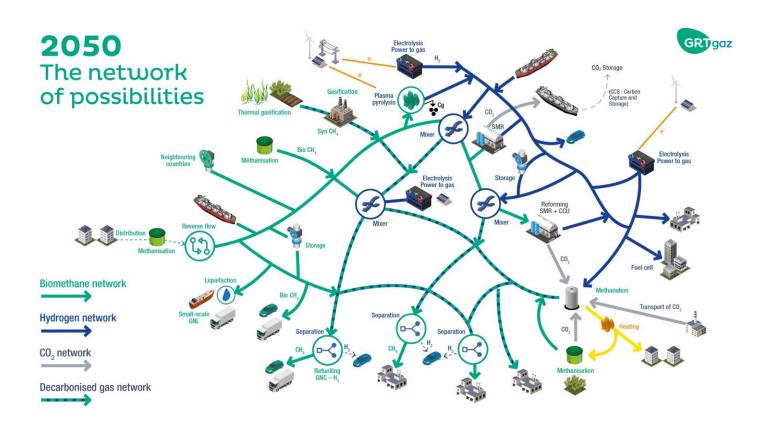
Attila Kovács, ERGaR

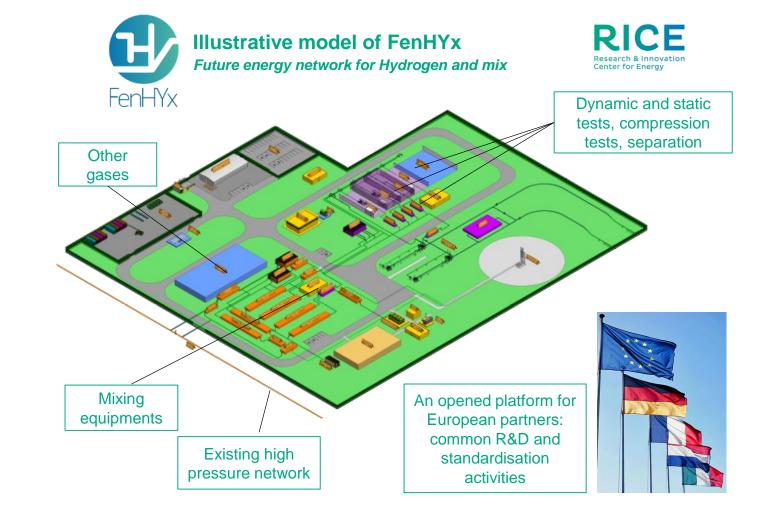
Panelists:

Beate Raabe, Eurogas

Bart Biebuyck, FCH JU

Dirk-Jan Mauzelaar, USG




Torben Brabo, Energinet

Key takeaways

"The role of gas in 2050 will not be the same as it is today."

- The clean energy transition is forcing a rethink of business models not only for traditional energy companies but also for those providing the backbone of energy infrastructure like pipelines.
- TSOs are adapting to the new reality: as part of our evolution we will no longer be merely acting as energy transporters but also as converters of energy.
- TSOs should have a general role in the organisation of the market for green gases and propose services to convert, store and transport energy vectors.
- Utilisation of the existing gas infrastructure together with electricity, in a hybrid system, provides a smart and cost efficient solution for achieving the EU decarbonisation and energy transition objectives.

Commissioner Cañete

EC Press Briefing on a "Clean Planet for All" Communication.

28th November 2018

"(P2x) projects need to be derisked and need support from Horizon Europe"

"We need to manage investment in infrastructure cleverly to avoid stranded assets"

Connecter les énergies d'avenir

grtgaz.com

ERGaR: Tool for cross-border transfer and mass balancing biomethane within the European natural gas network

ERGaR is foreseen to

- ✓ be the Europe-wide recognised organisation for administering and mass balancing volumes of biomethane distributed along the European natural gas network
- ✓ rely on the national biomethane registries as primary source of documentation
- ✓ follow jointly agreed procedures for issuing and cancelling European Proofs (Guarantees) of Origin for consignments with export destinations
- ✓ provide for cross-border transfer of sustainability claims (GHG emission characteristics) related to the consignments

23 members from 12 countries

- ERGaR members are operators of biomethane registries and major stakeholders of the European biomethane market.
- ERGaR welcomes new members: national biomethane registries, national biogas associations, natural gas industry partners, gas TSOs and DSOs and other stakeholders active in the European natural gas and biomethane industries.

www.ergar.org

Cooperation between the natural gas and biogas industries

- **■** Common interests, common future
- Several TSOs and DSOs have already joined ERGaR: Energinet.dk, ENAGAS, GRDF, Gasunie/Vertogas, NEDGIA, SWEDEGAS,
- Other ERGaR members are closely linked to the natural gas industry: AGCS, Gas.BE, RGFI, VSG,
- The cooperation should ensure the most feasible conditions for connecting the biomethane plants to the natural gas grid,
- Existing natural gas systems (transportation, storage, distribution, marketing) should be fully engaged with biomethane,
- Marketing of biomethane-natural gas blends (having attractive GHG characteristics) is to be developed.

THANKS FOR YOUR ATTENTION!

Attila Kovacs, Secretary General kovacs@ergar.org

Panel 2: Decarbonise and innovate with gas

What is decarbonised and renewable gas?

How can gas grids become enablers of decarbonisation?

How to facilitate gas decarbonisation?

Can hydrogen be matched to industrial clusters and biogas to agricultural areas?

How can decarbonised and renewable gas best address the needs of the

electricity, heat, and transport sector?

SLIDO INSTRUCTIONS

- 1. Open browser (e.g. Internet Explorer, Google Chrome, etc.)
- 2. Go to www.Slido.com
- 3. Enter event code ENTSOG2018
- 4. Type your question
- 5. Type your name
- 6. Press 'send'

Please note:

Messages may take a few seconds to appear on the screens in the room. Click to add text.

WRAP UP

Moderator: Sonja van Renssen, Energy Post

FINAL REMARKS

Jan Ingwersen, General Manager, ENTSOG

THANK YOU FOR YOUR ACTIVE PARTICIPATION!

INVITATION TO WALKING DINNER

18:30-21:00