# Cost-Benefit Analysis for a Pipeline Project

The Shannon Pipeline

#### **PRESENTED TO**

EntsoG, 8th Workshop on the European Ten Year Network Development Plan

#### PRESENTED BY

Marcella Fantini

November 20, 2013





**The Cost-Benefit Analysis** 

**The Economic Analysis** 

**Lessons Learned** 

The Shannon Pipeline is a 26 km. 30" pipeline that will connect the Shannon LNG Terminal in Ralappane Co. Kerry to the Bord Gáis Eireann ("BGE") transmission system at Foynes in Co. Limerick

- The Shannon Pipeline is a part of the Shannon LNG terminal project, which has been included in the list of Projects of Common Interest ("PCI")
- The pipeline allows Third Party Access ("TPA") while the LNG terminal does not;
- Building the pipeline before a decision has been made on the LNG terminal will allow connection to the gas grid of three towns that it is not otherwise economic to connect.

### **The Shannon Pipeline Project**



### Financing of the Project

### Shannon LNG wishes to apply for a grant for the Shannon Pipeline. The criteria to get a grant are:

- The infrastructure allows for Third Party Access
- The project is not commercially viable without the grant
- The project specific cost-benefit analysis provides evidence of significant positive externalities
- The project has received a cross-border cost allocation decision or aims to provide cross-border services
  - ACER Guidelines for cross-border allocation decision provides that a cost-benefit analysis is required

The Cost-Benefit Analysis was carried out within the framework provided by the EntsoG consultation document



**The Cost-Benefit Analysis** 

**The Economic Analysis** 

**Lessons Learned** 

### **The Cost-Benefit Analysis**



# Methodology to evaluate infrastructures proposed by the DG REGIO (2008)

- Discounted Cash Flow methodology ("DCF")
- Financial indicators to evaluate return on investment and on capital and financial sustainability
- Takes the perspective of the investors



#### **Draft Methodology Proposed by EntsoG**

- Quantitative measures
- Monetisation of the impact of the project using the "avoided cost approach"
- Qualitative measures
- Takes the perspective of society- tries to capture the externalities of the project

### The Cost-Benefit Analysis - Implementation



- Available financing sources (equity and debt)
- Expected costs and revenues along the asset's useful life
- Financing sources required to make the project commercially viable

Assessment of project commercial viability



**Financial Analysis** 

### Identification of the interested area

#### Identification of major benefits

- Monetary savings
- Environmental benefits
- Increased security of supply
- Reduction in gas prices

### **Quantification of benefits**



**The Cost-Benefit Analysis** 

**The Economic Analysis** 

**Lessons Learned** 

## **Approach and Summary of Results**

#### **Pipeline on a Stand-Alone Basis**

- Interested Area: Ireland
- Major benefits
  - Substitution of more expensive fuels with gas (avoided purchase and transportation costs)
  - Reduction in CO2 emissions from fuel substitution
- Positive net benefits
- Sensitivities
  - Fuel prices
  - Investment costs
  - O&M costs

#### **Pipeline and LNG Terminal**

- Interested Area
  - Ireland
  - Northern Ireland
  - Great Britain
- Major benefits
  - Increased security of supply
  - Reduction in import dependence (Ireland)
  - Positive impact on gas prices (marginal price reduction)
- Positive net benefits
- Sensitivities
  - Fuel prices
  - Investment costs
  - O&M costs

### The Pipeline and the Terminal

#### **Combining elements of the project**

- SLNG is applying for a grant for the Shannon <u>pipeline</u>, not the terminal;
- However, the terminal has positive economic benefits, and the pipeline increases the chance that the terminal will be built and the benefits realized.
- Therefore we calculated the benefits for the terminal and credited the pipeline with a fraction of the benefits (5-10%).

### Inputs

| Variable                          | Pipeline on Stand-Alone Basis                                      | Pipeline and LNG Terminal                                                                          | Notes/Source                                                                      | Variable                                      | Pipeline on Stand-Alone Basis                | Pipeline and LNG Terminal                    | Notes/Source                                                       |
|-----------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|
| Valiable                          | ripenne on stand-Alone basis                                       |                                                                                                    |                                                                                   |                                               | · ·                                          |                                              | IEA World Energy Outlook 2012. Price                               |
| Time Horizon                      | 22 years of operating life                                         | 22 years of operating life for the<br>pipeline and 20 years for the LNG<br>terminal                | Takes into account difference in<br>commissioning of pipeline and LNG<br>terminal | Fuels and Carbon prices                       | Gas, Coal, Lignite, Fuel Oil, Gasoil,<br>CO2 | Gas, Coal, Lignite, Fuel Oil, Gasoil,<br>CO2 | for fuel oil estimated on the basis of<br>historical data          |
|                                   |                                                                    | terminai                                                                                           | terminai                                                                          |                                               |                                              |                                              | National Regulatory                                                |
| Discount Factor                   | 3.5%                                                               | 3.5%                                                                                               | DG Regio                                                                          |                                               |                                              | Naional production                           | Authorithy/TSOs/Infrastructure<br>operators                        |
| Calorific value                   | Gas, Coal, Lignite, Fuel Oil, Gasoil                               | Gas, Coal, Lignite, Fuel Oil, Gasoil                                                               | IEA, Energy Statistics Manual                                                     |                                               |                                              | Underground storage                          | National Regulatory<br>Authorithy/TSOs/Infrastructure<br>operators |
| Emission Factors (GHG)            | Gas, Coal, Lignite, Fuel Oil, Gasoil                               | Gas, Coal, Lignite, Fuel Oil, Gasoil                                                               | Sustainable energy Authority of Ireland                                           | Gas specific inputs (flows, average capacity) | N.A.                                         | LNG regasification terminals                 | National Regulatory<br>Authorithy/TSOs/Infrastructure<br>operators |
| Fuel's transportation costs       | Transportation costs of gas, coal,<br>lignite, fuel oil, gasoil to | Transportation costs of gas, coal,<br>lignite, fuel oil, gasoil to                                 | Jaspers/industry reports and studies                                              |                                               |                                              | Storage capacity of LNG Terminals            | National Regulatory<br>Authorithy/TSOs/Infrastructure<br>operators |
|                                   | residential/commercial/industrial sector                           | residential/commercial/industrial sector                                                           |                                                                                   |                                               |                                              | Entry/exit points (capacity)                 | National Regulatory Authorithy/TSOs                                |
|                                   | 5000                                                               | 50001                                                                                              |                                                                                   |                                               |                                              | Import                                       | National Regulatory Authorithy/TSOs                                |
| Other externalities               | SO2, Nox, etc                                                      | SO2, Nox, etc                                                                                      | Jaspers/industry reports and studies                                              |                                               |                                              | Peak gas demand                              | National Regulatory<br>Authorithy/Ministry                         |
| Market Share of Alternative Fuels | Coal, Fuel Oil and Gasoil for                                      | trial/commercial/residential industrial/commercial/residential which a substitution effect exists. | Gas Market Input                                                                  | N.A.                                          | Average gas demand                           | National Regulatory<br>Authorithy/Ministry   |                                                                    |
|                                   | industrial/commercial/residential sector                           |                                                                                                    |                                                                                   |                                               |                                              | Gas demand coverage                          | National Regulatory<br>Authorithy/Ministry                         |



#### A large amount of inputs from different sources is required

## Analysis – Calculation of Avoided Costs (1/2)

#### EXAMPLE

| (+) Avoided cost to power generation |        |
|--------------------------------------|--------|
| Avoided coal costs                   |        |
| Purchase cost                        | EUR/GJ |
| Transportation cost                  | EUR/GJ |
| D Capital and O&M costs              | EUR/GJ |
| CO <sub>2</sub> emissions            | EUR/GJ |
| Other externalities                  | EUR/GJ |
| Total unit cost                      | EUR/GJ |
| Total avoided cost                   | mEUR   |
|                                      |        |
| Avoided lignite costs                |        |
| Purchase cost                        | EUR/GJ |
| Transportation cost                  | EUR/GJ |
| D Capital and O&M costs              | EUR/GJ |
| CO <sub>2</sub> emissions            | EUR/GJ |
| Other externalities                  | EUR/GJ |
| Total unit cost                      | EUR/GJ |
| Total avoided cost                   | mEUR   |

| (+) Avoided cost to industry/commercial |        |
|-----------------------------------------|--------|
| Avoided coal costs                      |        |
| Purchase cost                           | EUR/GJ |
| Transportation cost                     | EUR/GJ |
| CO <sub>2</sub> emissions               | EUR/GJ |
| Other externalities                     | EUR/GJ |
| Total unit cost                         | EUR/GJ |
| Total avoided cost                      | mEUR   |
|                                         |        |
| Avoided fuel oil costs                  |        |
| Purchase cost                           | EUR/GJ |
| Transportation cost                     | EUR/GJ |
| CO <sub>2</sub> emissions               | EUR/GJ |
| Other externalities                     | EUR/GJ |
| Total unit cost                         | EUR/GJ |
| Total avoided cost                      | mEUR   |
|                                         |        |
| Avoided gasoil costs                    |        |
| Purchase cost                           | EUR/GJ |
| Transportation cost                     | EUR/GJ |
| CO <sub>2</sub> emissions               | EUR/GJ |
| Other externalities                     | EUR/GJ |
| Total unit cost                         | EUR/GJ |
| Total avoided cost                      | mEUR   |

## Analysis – Calculation of Avoided Costs (2/2)

| (+) Avoided cost to residential |                  |
|---------------------------------|------------------|
| Avoided coal costs              |                  |
| Purchase cost                   | EUR/GJ           |
| Transportation cost             | EUR/GJ           |
| CO <sub>2</sub> emissions       | EUR/GJ           |
| Other externalities             | EUR/GJ           |
| Total unit cost                 | EUR/GJ           |
| Total avoided cost              | mEUR             |
| Avoided gasoil costs            |                  |
| Purchase cost                   | EUR/GJ           |
| Transportation cost             | EUR/GJ           |
| CO <sub>2</sub> emissions       | EUR/GJ           |
| Other externalities             | EUR/GJ           |
| Total unit cost                 | EUR/GJ           |
| Total avoided cost              | mEUR             |
| (-) Cost of gas                 |                  |
| Purchase cost                   | EUR/GJ           |
| Transportation cost             | EUR/GJ           |
| CO <sub>2</sub> emissions       | EUR/GJ           |
| Other externalities             | EUR/GJ           |
| Total unit cost                 | EUR/GJ           |
| Total gas cost                  | mEUR             |
| Economic Benefits               |                  |
| Avoided fuel & transport costs  | (mln €)          |
| Avoided emissions               | ( <i>m</i> In €) |

#### EXAMPLE

The net benefit is equal to the sum of avoided costs to the power, industrial, commercial and residential sector net of the cost to purchase and deliver gas and of the cost of gas emissions

### Analysis – Calculation of Net Benefits

| Pipeline (mln €)                 | [1]                     |
|----------------------------------|-------------------------|
| Investment costs                 |                         |
| O&M Costs                        |                         |
| Taxation                         |                         |
| Replacement costs                |                         |
| Residual value                   |                         |
| LNG (mln €)                      | [2]                     |
| Investment costs                 |                         |
| O&M Costs                        |                         |
| Taxation                         |                         |
| Replacement costs                |                         |
| Residual value                   |                         |
| TOTAL INVESTMENT COSTS           | [3]=[1]+[2]             |
| Avoided fuel and transport costs |                         |
| Avoided emissions                |                         |
| BENEFITS ON ROI                  | [4]                     |
| UK                               |                         |
| NI                               |                         |
| CROSS BORDERS BENEFITS           | [5]                     |
|                                  |                         |
| TOTAL BENEFITS                   | [6]=[4]+[5]             |
| NET BENEFITS                     | [7]=[6]-[3]+TV          |
| ENPV                             | NPV di [7]              |
| ERR                              | IRR di [7]              |
| B/C ratio                        | NPV di [7] / NPV di [3] |

EXAMPLE

The net benefits of the project are equal to the sum of national and crossborder benefits net of all costs

Project specific indicators (net present value of net benefits, internal rate of return, ratio between costs and benefits) are used to assess the economic relevance of the project and to rank different projects

## **Calculation of Project Specific Indices**

# Calculation of project-specific indices has been carried out using formulae provided by EntsoG's draft methodology

- Available data allowed us to calculate the Daily Peak Exposure Index (EXP) for Ireland and Northern Ireland and the Import Dependence Index (IDI) for Ireland
- Other project specific indices (such as (N-1) indicator and the import route diversification index) discussed qualitatively on the basis of data and information provided by the national regulator and/or the Government

The major issue arising when calculating indices is the difference in data provided from difference sources which highlights the need to have a consistent database at EU level

### **Estimating Price Effects**

- The LNG terminal will increase the supply of gas in the UK/Irish gas market, and increase the level of competition.
- We used a simple model of 'quantity' or Cournot competition, which gives the relationship between the market shares of the suppliers and the margin.
- We re-calculated the new lower margin with the SLNG terminal, and multiplied the price reduction by the expected demand to get the expected reduction in gas costs in Euros.



**The Cost-Benefit Analysis** 

**The Economic Analysis** 

**Lessons Learned** 

### Lessons learned

## Implementation of the cost benefit analysis has highlighted several issues

- The costs of a project are obvious, but identifying all of the benefits can be difficult
- For example, Shannon LNG did not initially identify the customers switching from gas oil to natural gas as a benefit.
- But this turned out to be one of the most important benefits of the project
- As a result, the analysis crucially depends on fuels and carbon prices.

### Lessons learned (cont.)

- Prices from international sources might be helpful for comparisons at EU system level, use of such prices might not be appropriate for specific projects and circumstances
- Cost-benefit analysis are not an exact science the use of judgment cannot be avoided. A good knowledge of the economics of gas markets and infrastructures is required
- Capacity data for infrastructures (including technical capacity, average available capacity, load factors, etc.) have to be consistent at the EU level. The building of a EU database will help address this issue

### **Project Team**



#### **MARCELLA FANTINI**

Senior Associate | Rome marcella.fantini@brattle.com +39.064.888.8145



#### **DAN HARRIS**

Principal | Rome dan.harris@brattle.com +39.064.888.8146

The views expressed in this presentation are strictly those of the presenter(s) and do not necessarily state or reflect the views of The Brattle Group, Inc.

### **About Brattle**

The Brattle Group provides consulting and expert testimony in economics, finance, and regulation to corporations, law firms, and governments around the world. We aim for the highest level of client service and quality in our industry.

We are distinguished by our credibility and the clarity of our insights, which arise from the stature of our experts, affiliations with leading international academics and industry specialists, and thoughtful, timely, and transparent work. Our clients value our commitment to providing clear, independent results that withstand critical review.

## **Our Practices**

#### PRACTICES

- Antitrust/Competition
- Commercial Damages
- Environmental Litigation and Regulation
- Intellectual Property
- International Arbitration
- International Trade
- Product Liability
- Regulatory Finance and Accounting
- Risk Management
- Securities
- Tax
- Utility Regulatory Policy and Ratemaking
- Valuation

#### **INDUSTRIES**

- Electric Power
- Financial Institutions
- Health Care Products and Services
- Natural Gas and Petroleum
- Telecommunications and Media
- Transportation

### Offices

#### **NORTH AMERICA**



Cambridge

New York

San Francisco



#### **EUROPE**



London

Madrid

Rome