

TYNDP Outputs

The TYNDP assessment

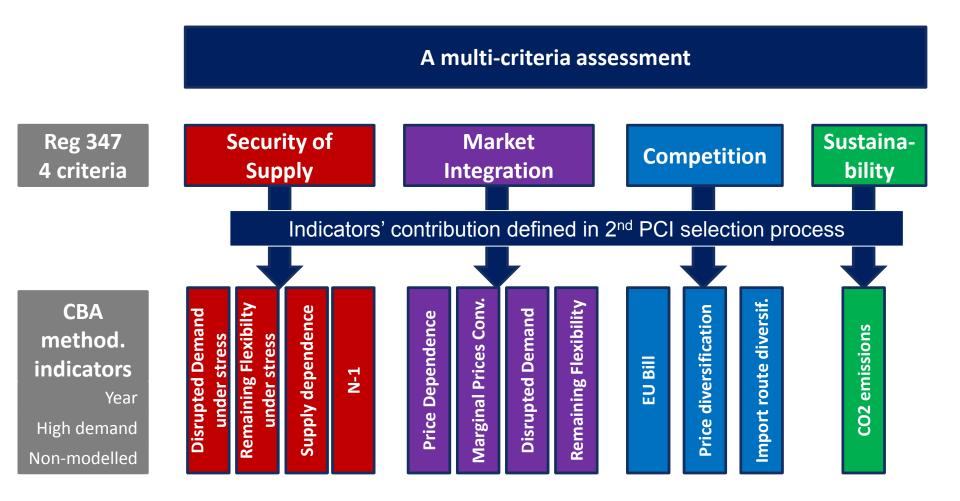
ENTSOG System Development Area

TYNDP is a multi-criteria assessment

The TYNDP assessment frame is defined by the CBA methodology

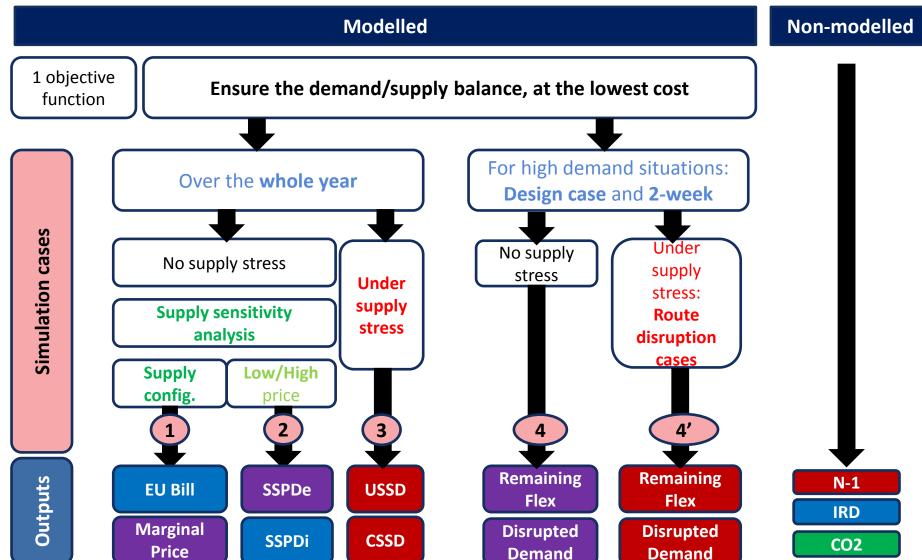
It is a multi criteria assessment

- > Aiming at assessing the situation along the criteria defined by Reg. 347
- > Aiming at assessing the projects along a wide range of potential benefits


Within this multi-criteria assessment

- > Some parts are modelled, other are not
- > Some parts looks at quantitative indicators that are not monetised
- > Some parts looks at quantitative indicators that could be monetised using a fixed value
- > Some parts looks at indicators that are monetised as part of the simulation

All parts are as relevant and none should be disregarded.

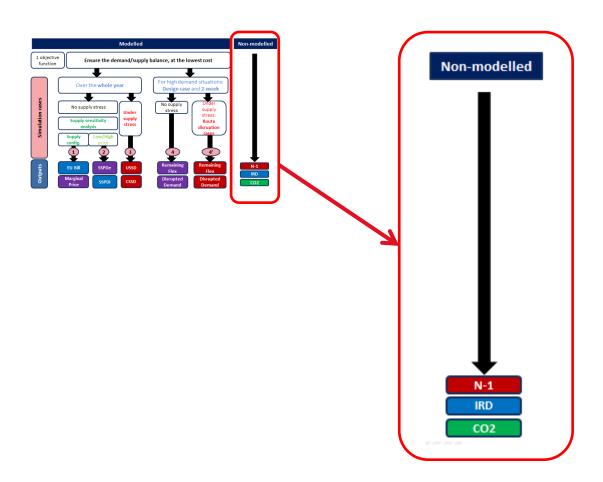

TYNDP is a multi-criteria assessment

TYNDP is a multi-criteria assessment

TYNDP assessment

The assessment is performed

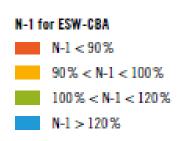
- > For the different Infrastructure Levels (possible developments of the gas system)
- > Over the whole time horizon
- > For the retained Demand Scenarios


Infrastructure Levels

S		Low Infrastructure Level	Mature Infrastructure Level	High Infrastructure Level	PCI Infrastructure Level	Time Snapshots
emand Scenario	Green Revolution	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035	
	Blue Transition	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035	
	Slow Progression	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035	2017, 2020, 2025, 2030, 2035	

Demand Scenarios may not all be assessed in the TYNDP. Decision will be taken at a later stage.

Non-modelled indicators



SoS

N-1 for ESW-CBA (N-1)

- > Question addressed: are entry capacities sufficient to cover design case demand in case of unavailability of the single largest infrastructure?
 - Capacity-based (not flow-based)
 - Application of lesser-of-rule
 - Per demand scenario
 - Per Infrastructure level
 - Per year

$$N-1 = \frac{IP + NP + UGS + LNG - I_m}{Dmax} * 100$$

Non-modelled indicators

Competition

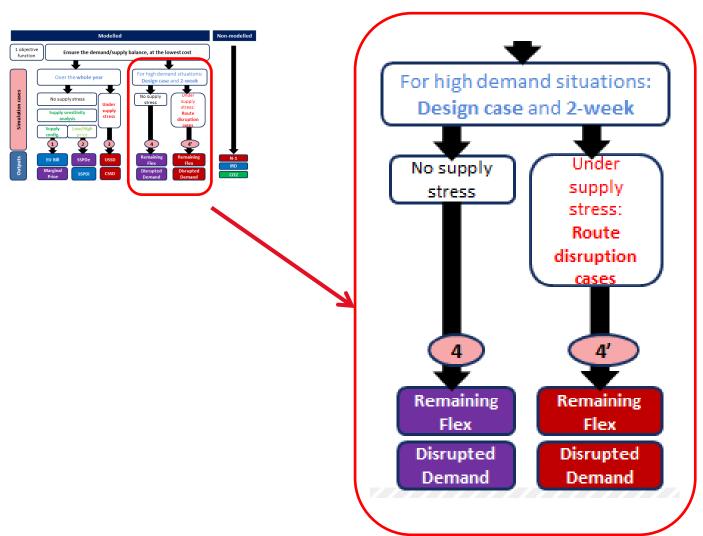
Import Route Diversification (IRD)

> Measures the **diversification of paths that gas can flow through** to reach a country (or balancing zone), based on the entry capacity split between entry points

- HHI-type indicator
- Capacity-based (not flow-based)
- Per Infrastructure level
- > The lower , the better the diversification

IRD =

$$\sum_{l}^{Xborder} \left(\sum_{k}^{IP} \% \ IP_{k} \ Xborder_{l}\right)^{2} + \sum_{j}^{Source} \sum_{i}^{IP} \left(\% \ IP_{i} \ from \ source_{j}\right)^{2} + \sum_{m} \left(\% \ LNG \ terminal_{m}\right)^{2}$$



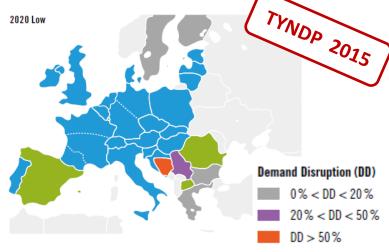
- > CO2 emissions deriving from gas demand and coal demand for power generation
- > Calculation based on the power methodology module: generation mix' thermal gap splitt between gas and coal

High demand indicators Disrupted rate and Remaining Flexibility

Disrupted Demand (DD)

- > Question addressed: are countries (or BZ) facing demand curtailment under high demand situations? If yes, which share of their demand is curtailed?
 - Both Disrupted Demand Rate and Disrupted Demand Quantity are calculated

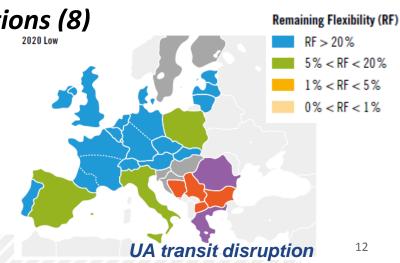
Remaining Flexibility (RF)


- > Question addressed: how much additional demand is a country (or BZ) able to cope with? Expressed as share of the country's actual demand.
 - Calculated for each country one by one

High demand indicators Disrupted rate and Remaining Flexibility

entsog

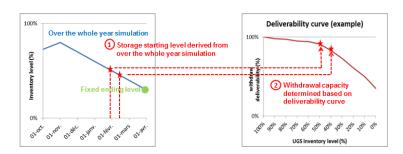
Market integ.


DD and RF under normal situation

SoS

DD and RF under route disruption situations (8)

- > RU transit through **Ukrainian** or **Belarus**
- > NO: Langeled or Franpipe disruption
- > DZ: **Transmed** or **MEG** disruption
- > LY: Green Stream
- > AZ : TANAP



entsog

High demand indicators Disrupted rate and Remaining Flexibility

Modelling assumptions

- > Demand: design case and 2-week high (per demand scenario)
- > Supplies
 - up to 110% (of daily average yearly maximum)
 - Disruption is the "last resort supply"
- > Infrastructures
 - Storages: deliverability depends on inventory

- LNG terminals
 - Design case: send-out up to 100% of send-out capacity
 - 2-week case: use of tanks on 1st week, possible additional cargoes on 2nd week

High demand indicators Disrupted rate and Remaining Flexibility

Proposal for the valuation of lost load – Background

- > Request from institutions for further monetization, including in ACER Opinion
- > TYNDP 2015 approach in the modelling
 - Mathematical value of 105.000 EUR/GWh to be the most expensice "source"
 - This did not represent any monetary value

Proposal for the valuation of lost load

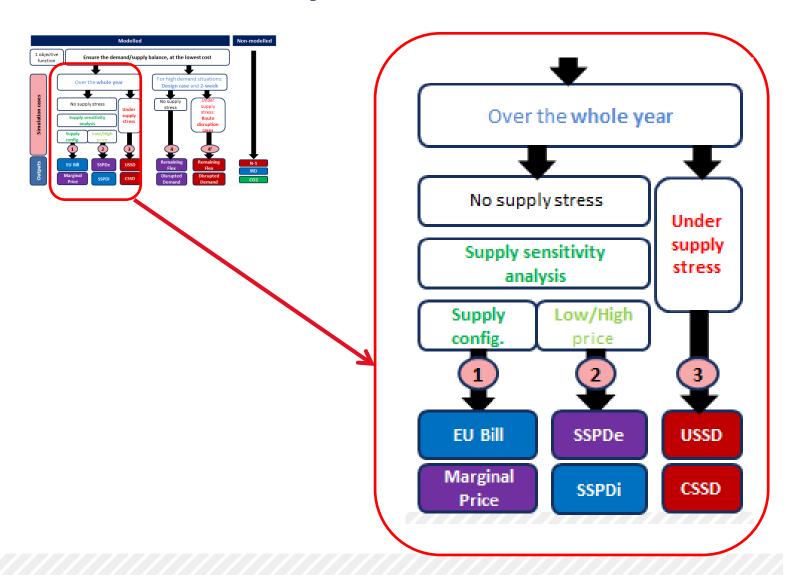
(Total EU28 GDP/Gross Inland Consumption) x Demand not satisfied as a result from the modelling

> Pros

- Simple
- Transparent
- Understandable
- Data is readily available and is easy to project for the future
- Provides a max. Estimate
- EIB uses similar approach, methodologically they have approved this proposal

> Cons

- Real GDP loss would be different (less/more) ?
- Specificities of a given disruption case and the economic agents' reaction to that are not considered


EU 28	2010	2011	2012	2013
Gross Inland Energy Consumption - GIEC (kTOE)	1.766.132	1.698.070	1.686.081	1.666.318
GDP (mEUR) current prices	12.371.536	12.711.207	12.959.736	13.068.601
CoD - GIEC (EUR/GWh)	602.311	643.652	660.903	674.359

entsog

Proposal for the valuation of lost load FAQs

- > Data source
 - Gross Inland Consumption: Eurostat/IEA assumptions for the future;
 - GDP: IEA/ECB/World Bank assumptions for the future
- > Why not different values for each country are proposed?
 - Possible improvements in future publications are possible
 - Use of a common Social Discount Rate in PS-CBA
- > Why not to use only the gas consumption or the gas share of the energy consumption?
 - In case we assume that the contribution of each energy source in the energy mix to the GDP is the same, the result is the same
 - We do not have data to assume differently
- > Theoretically a more complex approach could be created
 - Practically the data, resources and time necessary for such an excercise makes it non-feasible

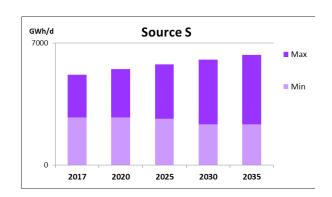
Competition

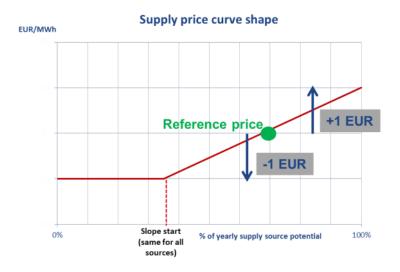
EU supply bill

> to answer the questions: do projects improve the EU supply bill?

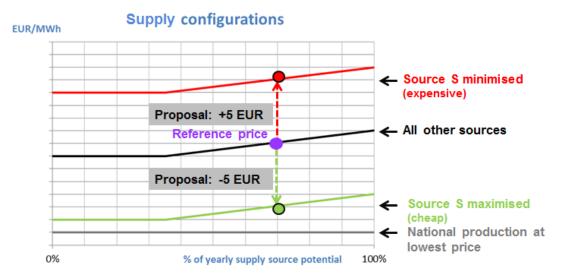
Market integ.

Marginal prices (at country level)


- > to answer the question: do projects improve the marginal **price convergence between countries**?
- > Marginal prices can be used to compute the **consumer bill** at country level

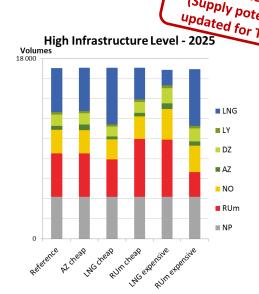

Monetised (simulation-based) part of the assessment

> Calculated as part of the same simulation


- > Supplies modelled using
 - [Min Max] supply range per source

- a reference supply price
- supply price curves

- > Integrated Market simulations cases: a sensitivity analysis on contrasted supply mixes
 - Using supply configurations



- > Market integration assumption: same **price per source** regardless of the import point
- > Supply configurations intend at representing **short-lasting situations** (not over 20 years)
- > Supply mixes do not depend on price spread assumptions
- Monetised results directly depend on price spread assumptions: standardised results based on standardised price spread assumptions (not a forecast)

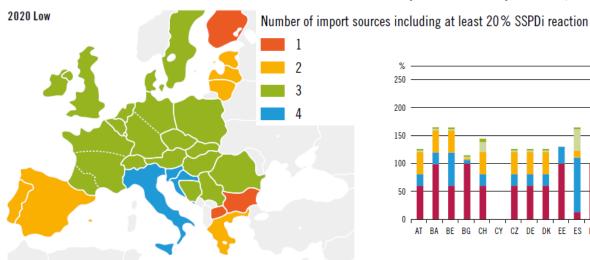
TYNDP 2017 will focus on 6 "integrated market" supply configurations

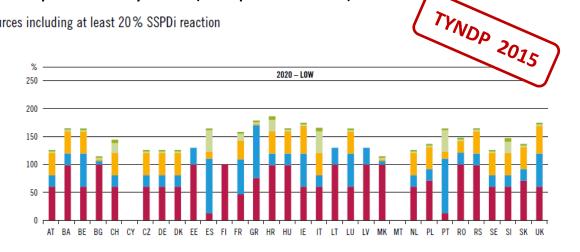
- Neutral (balanced use of sources)
- LNG maximisation
- LNG minimisation
- RU maximisation
- RU minimisation
- A7 maximisation

> cover high use of each individual source

ENTSOG has developed an additional "non-perfect market" config.

> Dealt with in a specific presentation

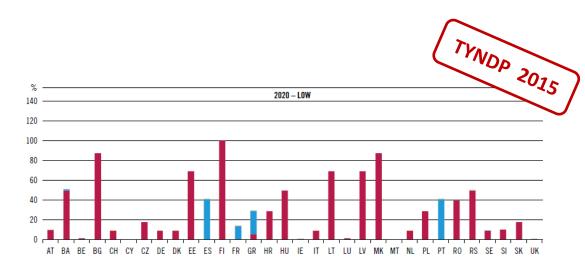



Supply price diversification (SSPDi)

- > measures the ability of each country to take advantage of a cheap source in its gas bill
 - Share of the country gas bill impacted when source S is cheap
 - Nota: such ability doesn't always mean physical access of the country to the source

> Simulation cases: each sources cheaper one by one (flat price curve)

The assumption of well-functioning markets across Europe may give a picture more positive than currently perceived.

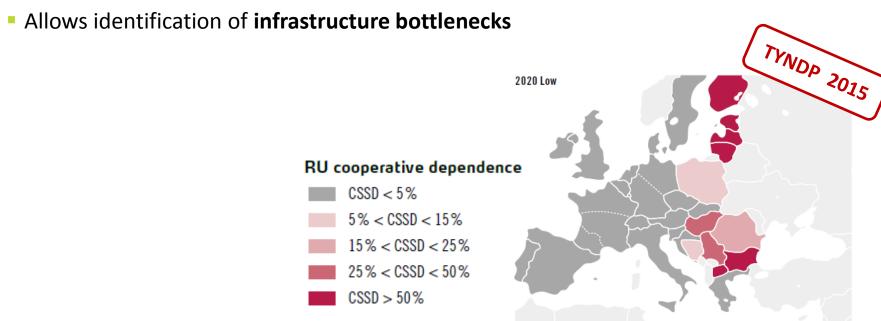


Market integ.

Supply price dependence (SSPDe)

- > measures the dependence of each country gas bill to a given source
 - Share of the country gas bill impacted when source S is expensive
- > Simulation cases: each sources more expensive one by one (flat price curve)

SoS

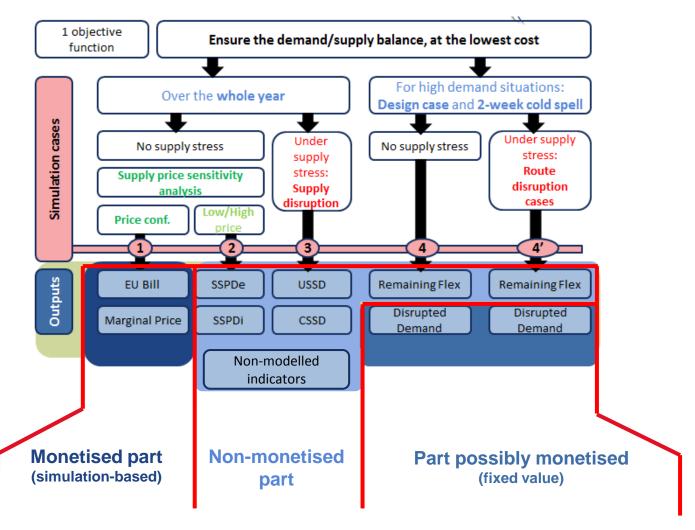

Cooperative / uncooperative supply source dependence (CSSD / USSD)

- > Measures **dependence** to each source at country level as the **minimum share of the** source in the country yearly supply mix
 - It is not intended at representing a disruption of the source
- > Modelling
 - Source S volume set to 0
 - Other sources: [Min; Max] range unchanged
 - Disruption is the "last resort supply"
 - Share of curtailed demand per country = min share of source

Cooperative / uncooperative supply source dependence (CSSD / USSD)

> Cooperative approach: dependence balanced between countries

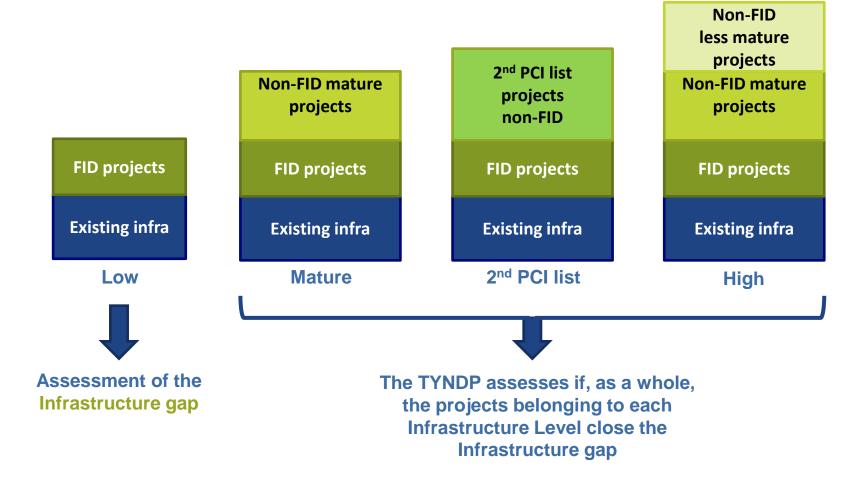
- > Uncooperative approach: countries will individually avoid dependence if possible
 - Allows identification of most depending countries



Cooperative / uncooperative supply source dependence (CSSD / USSD)

- > Simulation cases: each source one by one
- > Presentation will be simplified in TYNDP 2017, based on modelling results
 - For sources showing dependence: EU map at country granularity
 - For sources showing no dependence, for any country, already under Low Infra Level
 - Absence of dependence will be shown at EU level for Low Infra Level
 - Indicator not shown for other Infra Level
 - Indicator not computed in PS-CBA

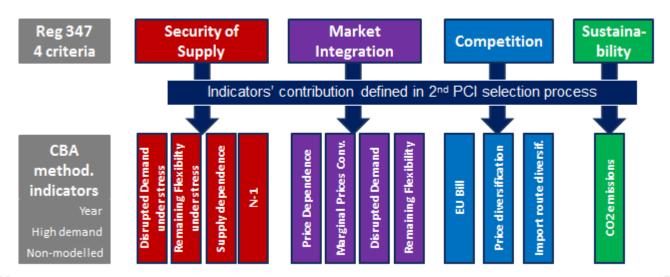
Conclusion



TYNDP is a multi-criteria assessment: all criteria are as relevant

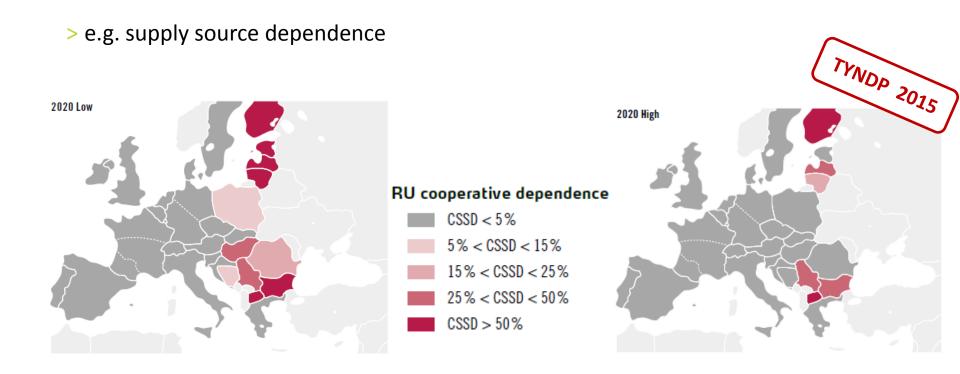
TYNDP assessment

The assessment is performed for the different Infrastructure Levels



TYNDP assessment: the infrastructure gap

The assessment under the Low Infrastructure Level provides the infrastructure gap


The TYNDP report will be re-structured with a chapter dedicated to the infrastructure gap

- > The chapter will be structured along the criteria from Regulation 347
- > For a given criterium, it will provide the results for the different contributing indicators

TYNDP assessment: do projects close the gap?

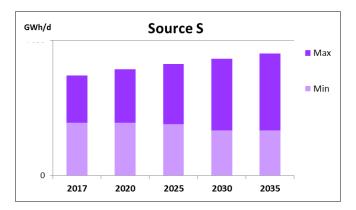
The assessment under the other Infrastructure Levels shows if projects, as a whole, allow to close the infrastructure gap

Thank You for Your Attention

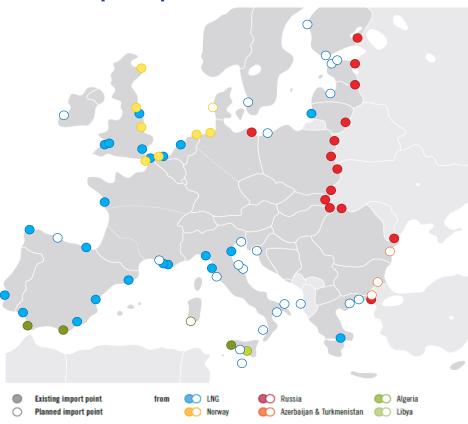
Céline Heidrecheid Business Area Manager, System Development

ENTSOG -- European Network of Transmission System Operators for Gas Avenue de Cortenbergh 100, B-1000 Brussels

EML: Adam.balogh@entsog.eu, Celine.heidrecheid@entsog.eu


WWW: www.entsog.eu

Reminder on supplies


Supplies

- > 6 sources considered
- > [Min Max] supply range per source

- > Each source is connected to the relevant import points
 - Existing
 - Or related to projects submitted to the TYNDP (depending on the considered Infrastructure Level)

Imports points in TYNDP 2015

